Los datos incompletos con valores de características que faltan son frecuentes en los problemas de agrupación. Los métodos tradicionales de clustering estiman primero los valores perdidos mediante imputación y luego aplican los algoritmos clásicos de clustering para datos completos, como K-median y K-means. Sin embargo, en la práctica, a menudo es difícil obtener una estimación precisa de los valores perdidos, lo que deteriora el rendimiento de la agrupación. Para mejorar la robustez de los algoritmos de agrupación, este artículo representa los valores perdidos mediante datos de intervalo e introduce el concepto de función objetivo de agrupación robusta. Se presenta una formulación de optimización robusta minimax (RO) para proporcionar resultados de agrupación insensibles a los errores de estimación. Para resolver el problema de RO propuesto, proponemos algoritmos robustos de clustering K-median y K-means con baja complejidad temporal y espacial. Las comparaciones y el análisis de los resultados experimentales en conjuntos de datos incompletos generados artificialmente y del mundo real validan la robustez y eficacia de los algoritmos propuestos.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Un problema de inversión y consumo con tasa de interés CIR y volatilidad estocástica.
Artículo:
Selección de socios en una empresa virtual: Un modelo de decisión multiatributo de grupo con valores medios ponderados posibilistas
Artículo:
Una Formulación Fuera de Línea de MPC para Sistemas LPV Utilizando Desigualdades de Matrices Lineales.
Artículo:
Existencia y unicidad para un sistema de ecuaciones diferenciales fraccionarias de Caputo-Hadamard con condiciones de contorno multipunto.
Artículo:
Soluciones analíticas de la difusión iónica y la conducción de calor en medios porosos multicapa.