Si \( P \) es un polinomio de grado \( n \), que no tiene ceros en \( \mathbb{C} \), entonces Aziz (1989) demostró que \( |P(z)| \geq |z|^n \), donde \( z \in \mathbb{C} \). En este artículo, consideramos una clase de polinomios \( P \) de grado \( n \), definidos como \( P(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0 \), y presentamos ciertas generalizaciones de la desigualdad anterior y algunos otros resultados conocidos.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Diseño de control retroalimentado lineal basado en DII para la sincronización práctica de sistemas caóticos con no linealidad de entrada incierta y aplicación a la comunicación segura.
Artículo:
Análisis del poder predictivo de los patrones de líneas K mediante los métodos de similitud y agrupación.
Artículo:
Control de Superficie Dinámica Adaptativa con Retroalimentación de Salida de Motor Síncrono de Imán Permanente con Retardos de Tiempo Inciertos a través de RBFNN
Artículo:
Análisis de estabilidad robusta de redes neuronales de memoria asociativa bidireccional híbrida de tipo neutral con retardos variables en el tiempo.
Artículo:
Sobre el sistema poroso-elástico con termoelasticidad de tipo III y retraso distribuido: Bien planteado y estable
Artículo:
Una revisión de la etiopatogenia y características clínicas e histopatológicas del melanoma mucoso oral.
Informe, reporte:
Técnicas de recuperación de suelos contaminados
Artículo:
Caracterización estructural de la materia orgánica de tres suelos provenientes del municipio de Aquitania-Boyacá, Colombia
Artículo:
Bases para implementar un programa de mantenimiento predictivo : caso de estudio