Sea un grafo. Si todos los autovalores de la matriz de adyacencia del grafo son enteros, entonces decimos que es un grafo integral. Un grafo está determinado por su espectro si cada grafo cospectral a él es de hecho isomorfo a él. En este artículo, investigamos algunas propiedades algebraicas del grafo de Cayley , donde (es un número primo entero y ) y . Primero, mostramos que es un grafo integral. Además, determinamos el grupo de automorfismos de . Asimismo, demostramos que y están determinados por su espectro.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Un nuevo enfoque para la reconstrucción de los FMI del modelo de descomposición y ensemble para la previsión de los precios del crudo
Artículo:
Mejora y simulación de un algoritmo autónomo de sincronización horaria para una constelación de satélites en capas
Artículo:
Análisis Dinámico del Sistema Caótico No Lineal con Perturbaciones Multiestocásticas
Artículo:
Dinámica de población con retraso estocástico bajo cambio de régimen: Soluciones globales y extinción
Artículo:
Nuevas soluciones de interacción de las ecuaciones KP tridimensionales (3+1) y Boussinesq bidimensionales (2+1)
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Libro:
Ergonomía en los sistemas de trabajo
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Los web services como herramienta generadora de valor en las organizaciones