En este artículo, se llevó a cabo un análisis comparativo de tres técnicas de planificación de trayectorias para resolver un sistema bola-laberinto con una plataforma de dos grados de libertad. El objetivo del sistema era guiar una bola desde un punto inicial hasta un punto de destino dentro de un laberinto definido por el usuario. Los algoritmos evaluados fueron RRT (Rapidly Exploring Random Trees), PRM (Probabilistic Roadmap) y el uso de diagramas de Voronoi en combinación con el algoritmo de búsqueda A*. El sistema implementado constaba de cuatro subsistemas: mecánico, de visión, de planificación y de control. La contribución principal del trabajo radicó en la evaluación experimental de los algoritmos en un entorno físico, así como en un análisis completo de los resultados, tanto gráfica como analíticamente. Se realizaron 20 ejecuciones de cada algoritmo para cuatro configuraciones diferentes del laberinto. Posteriormente, se calcularon las métricas de tiempo de ejecución y longitud de la trayectoria, determinando el tiempo promedio y la distancia promedio, junto con sus intervalos de confianza del 95%. Los resultados principales indicaron que el algoritmo RRT presentó una mayor variación en sus resultados, generando trayectorias más largas pero con un mejor rendimiento en términos de tiempo de ejecución. Por otro lado, el algoritmo PRM produjo trayectorias más cortas pero tuvo el peor rendimiento en cuanto al tiempo de ejecución. La técnica que utilizaba diagramas de Voronoi mostró menor variación en sus datos y generó trayectorias suaves y equidistantes entre las paredes del laberinto.
INTRODUCCIÓN
Las técnicas de planificación de trayectorias son de gran utilidad en la solución y optimización de problemas en múltiples áreas. Por ejemplo, en el campo de la robótica y automatización (1, vehículos autónomos 2, fabricación y ensamblaje de piezas (3, aplicaciones aeroespaciales (4, diseño de medicamentos 5 e incluso en juegos (6. El objetivo principal es obtener una trayectoria desde un punto inicial hasta un punto de destino en un ambiente dado. Este entorno puede ser muy complejo y con una gran variedad de obstáculos, lo cual implica problemas con alto grado de complejidad para un operador y resulta conveniente el uso de sistemas autónomos (5.
Para la planificación de trayectorias es necesario conocer la información del entorno (v.g. dimensiones, número de obstáculos, posición inicial, punto de destino) previo a la ejecución del algoritmo de planificación. Las métricas principales para evaluar un planificador consisten en la longitud de la trayectoria y el tiempo de ejecución (7. Por otra parte, entre los algoritmos de planificación más comunes se tienen los basados en muestreo como RRT (Rapidly Exploring Random Trees) 8 o PRM (Probabilistic Roadmap) 9.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Identificación de parámetros y esquema de control para la supervisión de un sistema automático de control de espesor con retardo de medición
Artículo:
Seguimiento de la potencia eólica máxima de un aerogenerador doblemente alimentado basado en un modo deslizante de segundo orden con ganancia adaptativa
Artículo:
Aplicación de sensores de flujo de calor al estudio de fenómenos de evaporación
Ponencia:
Generación automática de códigos utilizando razonamiento basado en casos, diseño de rutina y programación basada en plantillas
Artículo:
Factores que afectan a las propiedades de compresión y absorción de energía de los tubos metálicos de pared fina de pequeño tamaño