Estudiamos algoritmos de aprendizaje generados por esquemas de regularización en espacios de Hilbert de núcleo reproductor asociados con una pérdida de pinball -insensible. Esta función de pérdida está motivada por la pérdida -insensible para la regresión de vectores de soporte y la pérdida de pinball para la regresión cuantil. Se realiza un análisis de aproximación para estos algoritmos mediante un límite de varianza-expectativa cuando se cumple una condición de ruido para la medida de probabilidad subyacente. Las tasas se derivan explícitamente bajo condiciones a priori sobre la aproximación y la capacidad del espacio de Hilbert de núcleo reproductor. Como aplicación, obtenemos órdenes de aproximación para la regresión de vectores de soporte y la regresión regularizada cuantil.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Algunas propiedades de subclases de funciones multivalentes
Artículo:
Algoritmos exactos y heurísticos para el encaminamiento de vehículos AGV en trayectos con restricciones de precedencia
Artículo:
Algoritmo ORB homogeneizado mediante umbral dinámico y quadtree mejorado
Artículo:
Revisión de los métodos de migración en la obtención de imágenes por radar de penetración en el suelo B-Scan
Artículo:
¿La curva de ajuste mejor siempre es única?
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
Los web services como herramienta generadora de valor en las organizaciones
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Libro:
Ergonomía en los sistemas de trabajo