El reconocimiento de caras es un problema complejo en el campo de la visión por ordenador y el reconocimiento de patrones. Recientemente, se han presentado muchas técnicas basadas en estructuras geométricas locales para obtener una representación de baja dimensión de las imágenes faciales con un mayor poder discriminatorio. Sin embargo, estos métodos adolecen del problema del pequeño tamaño simple (SSS) o de la alta complejidad computacional de los datos de alta dimensión. Para superar estos problemas, proponemos un novedoso método de aprendizaje de estructuras múltiples locales para el reconocimiento facial, denominado análisis discriminante de vecindad directa (DNDA), que separa las muestras cercanas de interclase y preserva la geometría local dentro de clase en dos pasos, respectivamente. Además, el preprocesamiento PCA para reducir la dimensión en gran medida no es necesario en DNDA evitando la pérdida de información discriminativa. Los experimentos realizados con las bases de datos de rostros ORL, Yale y UMIST demuestran la eficacia del método propuesto.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículos:
Aplicaciones de un nuevo operador de -Diferencia en funciones convexas meromórficas de tipo Janowski
Artículos:
Modelo dinámico sobre la difusión de rumores con un medio
Artículos:
Existencia para la ecuación elíptica que implica potenciales cilíndricos decrecientes con exponentes subcríticos y críticos.
Artículos:
Dinámica no lineal en sistemas de ciencias aplicadas: Avances y perspectivas
Artículos:
Generalización de las Fuzzy Soft -Álgebras
Artículos:
Comportamiento del aguacate Hass liofilizado durante la operación de rehidratación
Artículos:
Caracterización estructural de la materia orgánica de tres suelos provenientes del municipio de Aquitania-Boyacá, Colombia
Informes y Reportes:
Técnicas de recuperación de suelos contaminados
Artículos:
Una revisión de la etiopatogenia y características clínicas e histopatológicas del melanoma mucoso oral.