Los sistemas no autónomos con soluciones periódicas se encuentran con frecuencia en aplicaciones. En este artículo, consideraremos sistemas simples cuyas soluciones son periódicas con un periodo conocido. Se investiga su transformación bajo métodos de colocalización linealizados, utilizando una técnica llamada muestreo estroboscópico, una versión discreta del conocido mapa de Poincaré. Se muestra que hay una relación inextricable entre la estabilidad AN (o BN) de los métodos numéricos y el comportamiento cualitativo correcto de las soluciones.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículos:
Optimización del control de recursos para transiciones en sistemas complejos
Artículos:
Espacios de Menger casi suaves
Artículos:
Estabilidad exponencial robusta dependiente del retardo para sistemas estocásticos neutrales inciertos con retardo variable en el tiempo en intervalos.
Artículos:
Atrayentes exponenciales de retroceso para ecuaciones de Klein-Gordon-Schrödinger no autónomas en retículas infinitas.
Artículos:
Decaimiento a largo plazo de la solución global de la ecuación cuasigeostrofica disipativa en 2D
Artículos:
Comportamiento del aguacate Hass liofilizado durante la operación de rehidratación
Artículos:
Caracterización estructural de la materia orgánica de tres suelos provenientes del municipio de Aquitania-Boyacá, Colombia
Informes y Reportes:
Técnicas de recuperación de suelos contaminados
Artículos:
Una revisión de la etiopatogenia y características clínicas e histopatológicas del melanoma mucoso oral.