Se realizó una investigación sobre la cinética de evaporación del antimonio del blíster de cobre fundido en un horno de fusión por inducción al vacío (VIM) a temperaturas de 1 473 y 1 523 K, y presiones de funcionamiento de 8 - 133 Pa. Se comprobó que la velocidad de evaporación del Sb es de primer orden con respecto a su contenido en la masa fundida. El coeficiente global de transferencia de masa de la evaporación de antimonio del blíster de cobre es de 1,82×10-5 ms-1 a 3,43×10-5 ms-1 a 1 473 K (8 Pa) - 1 523 K (133 Pa).
INTRODUCCIÓN
En el proceso de refinado del cobre al vacío, la eliminación del arsénico, el antimonio y el plomo reviste una importancia fundamental. Algunos de ellos deben eliminarse de los metales fundidos, debido a sus efectos deletéreos sobre las propiedades eléctricas del cobre. En el caso de los dos primeros elementos, pueden eliminarse del baño por evaporación. En el caso del antimonio, debido a su baja presión de vapor, resulta difícil.
En el trabajo se presentan los resultados de las investigaciones sobre la fusión al vacío de cobre blíster realizadas bajo una presión dentro del intervalo de 8 - 133 Pa y a una temperatura de 1 473 - 1 523 K. El insumo de cobre contenía 0,02 % masa de antimonio y 0,41 - 0,44 % masa de oxígeno. El proceso metalúrgico se llevó a cabo en el horno de vacío IS5/III de la empresa Leybold Heraeus. Los resultados se discutieron y permitieron determinar experimentalmente el coeficiente global de transferencia de masa para el antimonio.
PRESIÓN DE VAPOR DE COBRE Y ANTIMONIO SOBRE EL LÍQUIDO
ALEACIONES Cu-Sb-O
Los datos de la base de datos termodinámica del software de química outotec HSC muestran que para las aleaciones de cobre que contienen antimonio y oxígeno es posible tener Sb (g), Sb2(g), Sb4(g), SbO (g) y Sb4O6 (g) en la fase gaseosa. Así pues, la eliminación del antimonio del cobre ampolloso se produce por evaporación no sólo del antimonio puro, sino también de sus óxidos volátiles. Se pueden considerar las siguientes condiciones termodinámicas de este proceso:
XSb(1)XCu(1)
4pSb4(g)+pSbO(g)+4pSb4O6(g)pCufrac{4p_{Sb_4(g)}+p_{SbO(g)}+ 4p_{Sb_4O_6(g)}}{pCu} (1)
donde:
XSb(l), XCu(l) - fracción molar de antimonio y cobre respectivamente en un baño metálico líquido,
pSb, pSb2, pSb4, pSbO, pSb4O6 - presión de vapor en la fase gaseosa Sb, Sb2, Sb4, SbO, Sb4O6 respectivamente.
La tabla 1 muestra los valores de la presión de vapor de equilibrio de los componentes en fase gaseosa determinados a partir de los datos termodinámicos recogidos durante los experimentos a las temperaturas de 1 473 K y 1 523 K.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Propiedades de fluencia de los aceros microaleados
Artículo:
Estudio sobre el calor de hidratación y el desarrollo de la resistencia del hormigón espumado in situ
Artículo:
Efectos del Nano-TiO2 en la dureza y la durabilidad del material a base de cemento
Tesis:
Recubrimientos fotocrómicos que contienen nanocristales de bromuro de cobre y Zn+2/Cd+2 como coactivadores
Artículo:
Aumento de la viscosidad de las suspensiones acuosas de palygorskita mediante procesamiento físico y químico
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Análisis socioeconómico de la problemática de los desechos plásticos en el mar
Artículo:
Los web services como herramienta generadora de valor en las organizaciones