La acumulación de residuos poliméricos ha sido uno de los problemas medioambientales de mayor impacto en la historia reciente de la humanidad, procedente, sobre todo, de artefactos desechables, como las bolsas de plástico. El procesamiento de poliolefinas con aditivos prooxidantes es una alternativa para favorecer el proceso de degradación abiótica de las macromoléculas, incluyendo la termooxidación, de forma que los fragmentos oxigenados producidos puedan ser asimilados por los microorganismos.
El objetivo de este trabajo fue evaluar el proceso de degradación oxidativa termomecánica del polietileno (PE) durante la extrusión tubular de películas de HDPE/LDPE, sin y con 1% de dos prooxidantes diferentes, d2wTM y benzoína. Los resultados de los análisis viscosimétricos y MFI indicaron tamaños de cadena más pequeños en las películas aditivadas. Los espectros FTIR y los ángulos de contacto indican una mayor presencia de grupos funcionales polares en las muestras con prooxidantes. El análisis morfológico de la superficie mediante SEM indicó diferencias de homogeneidad del PE en las películas. Sin embargo, la benzoína resultó ser mejor prooxidante que el d2wTM.
INTRODUCCIÓN
El uso de materiales poliméricos ha estado creciendo a nivel mundial desde la década de 1940, reemplazando el uso de metales, cerámicas y madera en muchas ramas industriales. Paralelamente a esto, surge un importante problema ambiental relacionado con el uso de esta clase de materiales: la acumulación de desechos plásticos en el medio ambiente (suelo, ríos y océanos) debido a una disposición incorrecta e inconsciente, especialmente de artículos desechables, como bolsas, sacos, vasos y botellas de plástico. Debido a sus bajas masas específicas, fácil procesamiento y bajo costo, las resinas petroquímicas son las más utilizadas y también las más difíciles de degradar, incluyendo al PE, que desempeña un papel importante en el mayor volumen de desechos plásticos.
Una alternativa para resolver el problema ambiental sería el uso de polímeros biodegradables, que son macromoléculas que pueden ser divididas por la acción de enzimas biológicas de microorganismos (hongos, bacterias y algas) y posteriormente utilizadas como nutrientes para el crecimiento de colonias, siempre que estén en las condiciones ambientales adecuadas.
Así, los polímeros biodegradables vuelven al ambiente como compuestos gaseosos y sales, como CO2, H2O, CH4, dependiendo de la presencia o ausencia de oxígeno, en un proceso llamado mineralización. Sin embargo, los polímeros biodegradables son más costosos y difíciles de procesar, lo que dificulta su uso en comparación con las resinas petroquímicas. Además de esto, cuando son de bajo costo, no son aplicables al propósito requerido debido a la ausencia de alguna propiedad, generalmente mecánica.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Estudio de las variables de electrodeposicion de silice sobre estructuras monoliticas metalicas
Trabajo de curso:
Ingeniería de las reacciones químicas : reactores no isotérmicos
Video:
Fotocatálisis: cómo conseguir combustibles con luz solar
Artículo:
Claves para la selección de biorreactores
Artículo:
Análisis basado en modelos para la operación de hidrogenación de carbonato de etileno en reactores tubulares de tipo industrial
Libro:
Ergonomía en los sistemas de trabajo
Artículo:
Obtención de gas combustible mediante la bioconversión del alga marina Ulva lactuca
Artículo:
Sistemas de producción y potencial energético de la energía mareomotriz
Artículo:
La necesidad de la planeación estratégica en las organizaciones industriales modernas