El clasificador de máxima verosimilitud (MLC) y las máquinas de vectores de apoyo (SVM) son dos enfoques comúnmente utilizados en el aprendizaje automático. El MLC se basa en la teoría bayesiana para estimar los parámetros de un modelo probabilístico, mientras que la SVM es un método no paramétrico basado en la optimización en este contexto. Recientemente, se ha descubierto que la SVM en algunos casos es equivalente a la MLC en el modelado probabilístico del proceso de aprendizaje. En este trabajo, MLC y SVM se combinan en el aprendizaje y la clasificación, lo que ayuda a obtener una salida probabilística para SVM y facilitar la toma de decisiones suaves. En total se utilizan cuatro grupos de datos para las evaluaciones, que abarcan el sonar, el vehículo, el cáncer de mama y las secuencias de ADN. Las muestras de datos se caracterizan en términos de distribución gaussiana/no gaussiana y de muestras equilibradas/no equilibradas, que luego se utilizan para evaluar el rendimiento al comparar el clasificador SVM y el combinado SVM-MLC. Se presentan resultados interesantes que indican cómo puede funcionar el clasificador combinado en diversas condiciones.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Navegación de vehículos aéreos no tripulados mediante sensores inerciales y de flujo óptico de campo amplio
Artículo:
Derivación de la función de densidad de probabilidad de la relación señal a interferencia más ruido para el análisis de interferencia de MS a MS.
Artículo:
Combinación del ruido cognitivo de los usuarios con algoritmos genéticos interactivos y números difusos trapezoidales para el diseño de colores de productos
Artículo:
Efectos ansiolíticos de la acupuntura en evaluaciones fisiológicas y psicológicas para un ensayo clínico
Artículo:
Diferencias de género en la reactivación parasimpática durante la recuperación del test anaeróbico de Wingate
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Análisis socioeconómico de la problemática de los desechos plásticos en el mar
Artículo:
Los web services como herramienta generadora de valor en las organizaciones