Esta investigación presenta algunos resultados obtenidos bajo diferentes modelos de clasificación de patrones texturales de minerales presentes en imágenes digitales. El conjunto de datos utilizado esta caracterizado por un tamaño pequeño y presencia de ruido. Los modelos implementados fueron el clasificador Bayesiano, red neuronal (2-5-1), maquina de soporte de vectores (SVM), árbol de decisión y 3-vecinos más cercanos. Los resultados obtenidos luego de la validación cruzada demostraron que el modelo Bayesiano (84%) arrojo la mejor capacidad predictiva, debido principalmente a su robustez frente al ruido. La red neuronal (68%) y la SVM (67%) dieron resultados alentadores, que posiblemente puedan mejorarse al incrementar el tamaño del conjunto de datos; mientras el árbol de decisión (55%) y el k-vecinos (54%) no parecen ser adecuados para este problema, dado su sensibilidad al ruido.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Un estudio de las pérdidas de calor a través de los tubos de inyección de vapor utilizando CFD
Capítulo de libro:
Relación entre la superficie del suelo mineral y la tasa de secuestro de carbono para los biosólidos agregados al suelo
Artículo:
Las locomotoras del desarrollo: minas, energía e innovación
Artículo:
Diagnóstico de fallas de engranajes y cojinetes para equipos de minería de carbón en entornos geológicos complejos
Artículo:
Explosividad de gases desprendidos en los incendios subterráneos en las minas de carbón
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
Los web services como herramienta generadora de valor en las organizaciones
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Libro:
Ergonomía en los sistemas de trabajo