La decodificación de las actividades neuronales relacionadas con los movimientos voluntarios e involuntarios es fundamental para comprender los circuitos motores del cerebro humano y los trastornos neuromotores, y puede conducir al desarrollo de dispositivos protésicos neuromotores para la neurorrehabilitación. Este estudio explora el uso de los potenciales de campo local (LFPs) registrados en el cerebro profundo para la decodificación robusta del movimiento de los pacientes con enfermedad de Parkinson (EP) y distonía. Los datos de los LFPs de actividades de movimiento voluntario, como el chasquido del dedo índice de la mano izquierda y derecha, fueron registrados de pacientes que se sometieron a cirugías para la implantación de electrodos de estimulación cerebral profunda. Las características de la señal LFP relacionadas con el movimiento se extrajeron calculando la potencia instantánea relacionada con la respuesta motora en diferentes bandas de frecuencia neuronal. Se ha propuesto y desarrollado un innovador clasificador de conjuntos de redes neuronales para la predicción precisa del movimiento de los dedos y su próxima lateralidad. El clasificador de conjunto contiene tres clasificadores de redes neuronales de base, a saber, redes neuronales feedforward, de base radial y probabilísticas. La regla de votación por mayoría se utiliza para fusionar las decisiones de los tres clasificadores de base y generar la decisión final del clasificador de conjunto. El rendimiento global de la decodificación alcanza un nivel de acuerdo (valor kappa) de aproximadamente 0,729±0,16 para la decodificación del movimiento desde el estado de reposo y de aproximadamente 0,671±0,14 para la decodificación de los movimientos izquierdos y derechos indicados visualmente.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Biomimética de señalización para ingeniería de tejido óseo
Artículo:
Resumen de películas mediante aprendizaje supervisado y algoritmo de clasificación basado en gráficos
Artículo:
Evaluación de modelos de regresión de uso del suelo para dióxido de nitrógeno y benceno en cuatro ciudades de los Estados Unidos.
Artículo:
Investigación sobre un nuevo electrodo capacitivo para estudios geofísicos
Artículo:
Un modelo neuronal de traducción automática para dialectos árabes que utiliza el aprendizaje multitarea (MTL)