Desde la publicación original de Abel en 1827, su notable teorema sobre la constructibilidad de la división de la lemniscata se ha demostrado con ayuda de la teoría de las funciones elípticas. La prueba dada por Rosen en 1981 se considera, hoy por hoy, como definitiva. En ella se utiliza, además, la moderna e intrincada Class Field Theory. Aquí se presenta una demostración nueva, corta y simple del teorema de Abel para la lemniscata junto con su recíproco. Las únicas herramientas son las propiedades aditivas de las funciones lemniscáticas de Gauss y algunos elementos de teoría de Galois.
1 INTRODUCCIÓN
En 1801, Gauss [1, sección 7] demostró su célebre teorema sobre la construcción de los polígonos regulares utilizando las funciones trigonométricas o circulares. También anunció que la teoría se aplica a una clase más amplia de funciones trascendentales, incluida la longitud de arco lemniscática. Algunos años más tarde, Abel [2, pp. 361-362] demostró con claridad su famoso teorema. Más recientemente, Rosen [3, p. 388] ha afirmado ser el primero en hacer aparecer en letra de molde la inversa del teorema de Abel. En lo que sigue, demostramos comprenhensivamente el teorema y su inverso a partir de hechos muy elementales. Nuestra prueba mejora sustancialmente la técnica empleada por Hernández y Palacio [4, capítulo 4].
Teorema 1.1. La lemniscata puede dividirse en n arcos iguales mediante un compás y una regla no marcada si y sólo si n = 2kp1p2 - - - pt, donde los p´is son primos distintos de Fermat.
En la sección 2 definimos la lemniscata, discutimos su longitud de arco y refundimos las funciones lemniscáticas para adaptarlas al trabajo posterior. En la sección 3 damos nuestra prueba de la parte "si" del teorema 1.1 examinando el grupo de Galois de una extensión adecuada de Q(i). La sección 4 está dedicada a la parte "sólo si" del teorema. Al final sacamos algunas conclusiones sobre la posibilidad de generalizar el procedimiento a toda una clase de curvas que comprenden el círculo y la lemniscata.
2 FUNCIONES LEMNISCÁTICAS DE GAUSS
Aquí, la lemniscata es el lugar L de los puntos (x, y) en el plano que satisface la ecuación (x2 + y2)2 = x2 - y2. En coordenadas polares (r, θ), la ecuación se convierte en r2 = cos 2θ y su longitud de arco viene dada por la función
El seno lemniscático sl(x) es la función impar que resulta de extender el arcol-1 a la recta real de forma que sea periódica con periodo
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Dinámica global de la ecuación de Beverton-Holt sigmoidal con retraso
Artículo:
Componentes de Fatou acotadas de funciones enteras trascendentales compuestas con huecos.
Artículo:
Esquema de comercio móvil con clave simétrica dinámica basado en un mecanismo de autoverificación
Artículo:
Nota sobre la inversión de las matrices de Sylvester en los sistemas de control
Artículo:
Control óptimo de vibraciones para la suspensión de medio automóvil en redes a bordo en el dominio delta.