En los últimos años, la incidencia de los nódulos tiroideos ha mostrado una tendencia creciente año tras año y se ha convertido en una de las enfermedades importantes que ponen en peligro la salud humana. Las imágenes médicas de ultrasonido basadas en aprendizaje profundo se utilizan ampliamente en el diagnóstico clínico debido a su bajo coste, ausencia de radiación y bajo coste. El uso de la tecnología de procesamiento de imágenes para segmentar con precisión el área del nódulo proporciona información auxiliar importante para el diagnóstico del médico, que es de gran valor para guiar el tratamiento clínico. El propósito de este artículo es explorar el valor de aplicación de la detección combinada de la glicoproteína de cadena de azúcar anormal (TAP) y el antígeno carcinoembrionario (CEA) en la estimación del riesgo de cáncer de tiroides en pacientes con nódulos tiroideos de tipo IV y superior basado en imágenes médicas de aprendizaje profundo. En este trabajo, las imágenes de ultrasonido de tiroides se utilizan como contenido de investigación, y el método de conjunto de nivel de contorno activo se utiliza como base de segmentación, y se propone un algoritmo de segmentación para nódulos tiroideos. Este trabajo toma imágenes de ultrasonido de tiroides como contenido de investigación, utiliza el método de conjunto de niveles de contorno activo como base de segmentación, y propone un algoritmo de segmentación de imágenes Fast-SegNet basado en aprendizaje profundo, que amplía el modelo de red que se utilizó principalmente para la segmentación de imágenes médicas de tiroides a más escenarios de la tarea de segmentación. De enero de 2019 a octubre de 2020, se seleccionaron 400 pacientes con nódulos tiroideos de tipo IV y superior para el examen físico y la detección en el Centro de Gestión de la Salud de nuestro hospital, y se diagnosticaron como cáncer de tiroides mediante el examen patológico de los nódulos tiroideos bajo posicionamiento B-ultrasonido. Se comparan las tasas de detección de cáncer de tiroides en pacientes con nódulos tiroideos de tipo IV y superior; se detectan los niveles séricos de TAP y CEA; se utiliza PT-PCR para detectar la expresión de TTF-1, PTEN y NIS; se comparan la detección, el diagnóstico fallido, la tasa de diagnóstico erróneo y la eficacia diagnóstica de los tres métodos de detección. Este artículo utiliza la región del nódulo tiroideo segmentada en base a imágenes médicas de aprendizaje profundo y compara experimentos con el modelo CV, el modelo LBF y el modelo DRLSE. Los resultados experimentales muestran que la tasa de superposición de segmentación de este método es tan alta como 98,4%, lo que indica que el algoritmo propuesto en este artículo puede extraer con mayor precisión el área del nódulo tiroideo.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Validez de la prueba rápida del paludismo y la microscopía en la detección del paludismo en una región egipcia en fase de preeliminación
Artículo:
Revisión de las películas de diamante nanoestructuradas de baja dimensión e hibridizadas
Artículo:
Ictus en jóvenes
Artículo:
Red neuronal convolucional profunda de bajo rango para el aprendizaje multitarea
Artículo:
Propiedades de ruptura eléctrica de mezclas y nanocompuestos de LDPE a base de arcilla
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Análisis socioeconómico de la problemática de los desechos plásticos en el mar
Artículo:
Los web services como herramienta generadora de valor en las organizaciones