La aplicación de la inteligencia artificial a la agricultura ha atraído cada vez más atención en todo el mundo, especialmente en el desarrollo de robots para recolección. Este estudio se enfoca en resolver algunos problemas asociados durante la recolección robotizada de frutos en la temporada de cosecha, para lo cual se propone el uso de un modelo YOLOv3 modificado para la detección de tomates en condiciones ambientales complejas, a través del uso de la técnica LWYS, entre otras configuraciones adicionales que permiten incrementar la variabilidad de las imágenes de entrada y así obtener un modelo de detección de tomates más robusto. Las pruebas realizadas indican una detección de alta precisión en tiempo real bajo las condiciones ambientales evaluadas.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
¿Por qué diversificar la agroindustria azucarera en México?
Video:
Seminario web sobre sistemas alimentarios sostenibles
Artículo:
Inhibición de la enzima convertidora de angiotensina I con hidrolizados proteicos de Jatropha curcas
Artículo:
Variabilidad morfoagronómica en genotipos de arroz en el Pacífico Central, Costa Rica
Folleto:
Historia del chocolate : [la comida de los dioses]
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Libro:
Ergonomía en los sistemas de trabajo
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Los web services como herramienta generadora de valor en las organizaciones