La hemorragia subaracnoidea (HSA) es una de las enfermedades neurológicas críticas y graves con una elevada morbilidad y mortalidad. La tomografía computarizada (TC) de la cabeza es uno de los métodos preferidos para el diagnóstico de la HSA, que se confirma cuando la TC muestra una sombra de alta densidad en el espacio subaracnoideo. El análisis de estas imágenes mediante una hemorragia subaracnoidea basada en aprendizaje profundo reducirá la tasa aproximada de diagnósticos erróneos en general y de diagnósticos perdidos por parte de los clínicos en particular. La detección de la hemorragia subaracnoidea basada en el aprendizaje profundo incluye principalmente dos tareas, a saber, la clasificación de la hemorragia subaracnoidea y la segmentación de la región de la hemorragia subaracnoidea. Sin embargo, es difícil juzgar eficazmente la fiabilidad del modelo y clasificar la hemorragia que se basa en la probabilidad predictiva limitada de la salida de la red neuronal convolucional. Además, la segmentación del área de hemorragia basada en el aprendizaje profundo requiere una gran cantidad de datos de entrenamiento marcados de antemano y el gran número de parámetros de red hace que el entrenamiento del modelo no pueda alcanzar el óptimo. Para resolver estos problemas asociados a los modelos existentes, en este artículo se presenta un modelo híbrido basado en redes neuronales y aprendizaje profundo bayesiano para estimar la incertidumbre y clasificar de forma eficiente la hemorragia subaracnoidea. La estimación de la incertidumbre del modelo propuesto ayuda a juzgar si la predicción del modelo es fiable o no. Además, se utiliza para guiar a los clínicos a encontrar el área de hemorragia subaracnoidea desatendida. Además, se diseñó un modelo de aprendizaje profundo con mecanismo profesor-alumno para introducir la estimación de incertidumbre observacional para el aprendizaje semisupervisado de la hemorragia subaracnoidea. La estimación de la incertidumbre observacional detecta las áreas de hemorragia inciertas en las imágenes de TC y, a continuación, selecciona las áreas con alta fiabilidad. Por último, también utiliza estos datos no etiquetados para el entrenamiento del modelo.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículos:
Actividad catalítica de matrices de nanotubos de ZrO2 preparadas por el método de anodización
Artículos:
Comparación de parámetros ecocardiográficos tridimensionales de seguimiento de manchas para predecir el remodelado ventricular izquierdo
Artículos:
Desarrollo y evaluación in vitro de liposomas con lecitina de soja para encapsular paclitaxel
Artículos:
Nanoestructuras basadas en porfirinas para aplicaciones de detección
Videos:
Cas-CLOVER: Una alternativa limpia para CRISPR-Cas9
Artículos:
Comportamiento del aguacate Hass liofilizado durante la operación de rehidratación
Artículos:
Caracterización estructural de la materia orgánica de tres suelos provenientes del municipio de Aquitania-Boyacá, Colombia
Informes y Reportes:
Técnicas de recuperación de suelos contaminados
Artículos:
Una revisión de la etiopatogenia y características clínicas e histopatológicas del melanoma mucoso oral.