La hemorragia subaracnoidea (HSA) es una de las enfermedades neurológicas críticas y graves con una elevada morbilidad y mortalidad. La tomografía computarizada (TC) de la cabeza es uno de los métodos preferidos para el diagnóstico de la HSA, que se confirma cuando la TC muestra una sombra de alta densidad en el espacio subaracnoideo. El análisis de estas imágenes mediante una hemorragia subaracnoidea basada en aprendizaje profundo reducirá la tasa aproximada de diagnósticos erróneos en general y de diagnósticos perdidos por parte de los clínicos en particular. La detección de la hemorragia subaracnoidea basada en el aprendizaje profundo incluye principalmente dos tareas, a saber, la clasificación de la hemorragia subaracnoidea y la segmentación de la región de la hemorragia subaracnoidea. Sin embargo, es difícil juzgar eficazmente la fiabilidad del modelo y clasificar la hemorragia que se basa en la probabilidad predictiva limitada de la salida de la red neuronal convolucional. Además, la segmentación del área de hemorragia basada en el aprendizaje profundo requiere una gran cantidad de datos de entrenamiento marcados de antemano y el gran número de parámetros de red hace que el entrenamiento del modelo no pueda alcanzar el óptimo. Para resolver estos problemas asociados a los modelos existentes, en este artículo se presenta un modelo híbrido basado en redes neuronales y aprendizaje profundo bayesiano para estimar la incertidumbre y clasificar de forma eficiente la hemorragia subaracnoidea. La estimación de la incertidumbre del modelo propuesto ayuda a juzgar si la predicción del modelo es fiable o no. Además, se utiliza para guiar a los clínicos a encontrar el área de hemorragia subaracnoidea desatendida. Además, se diseñó un modelo de aprendizaje profundo con mecanismo profesor-alumno para introducir la estimación de incertidumbre observacional para el aprendizaje semisupervisado de la hemorragia subaracnoidea. La estimación de la incertidumbre observacional detecta las áreas de hemorragia inciertas en las imágenes de TC y, a continuación, selecciona las áreas con alta fiabilidad. Por último, también utiliza estos datos no etiquetados para el entrenamiento del modelo.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Influencia del plomo en la interpretación de muestras óseas con espectroscopia de descomposición inducida por láser
Artículo:
Correlación del Índice de Plestimografía Quirúrgica con Hormonas del Estrés durante la Anestesia con Propofol-Remifentanilo
Video:
¿Qué es la Nanotecnología? : [nanomedicina, nanoalimentos, nanorobots]. parte 2
Artículo:
Extracción de huellas de localización para el posicionamiento en interiores basado en la magnitud del campo magnético
Artículo:
Generando búsqueda web personalizada utilizando contexto semántico.
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Análisis socioeconómico de la problemática de los desechos plásticos en el mar
Artículo:
Los web services como herramienta generadora de valor en las organizaciones