El propósito de esta investigación es aplicar métodos de máquinas de vector de soporte (MVS) para determinar rápidamente las profundidades de terremotos utilizando registros sísmicos de la estación El Rosal, cerca de la ciudad de Bogotá – Colombia. El algoritmo fue entrenado con descriptores de señales de tiempo de 863 eventos sísmicos adquiridos entre enero de 1998 y octubre de 2008; solo se contemplaron terremotos de magnitudes ≥ 2 M_L, filtrando sus señales para remover diversos tipos de ruidos no relacionados con temblores terrestres. Durante las etapas de entrenamiento de la MVS varias combinaciones del exponente de la función kernel y factor de complejidad fueron considerados para señales de tiempo de 5, 10 y 15 segundos junto con terremotos de magnitudes 2.0, 2.5, 3.0 y 3.5 M_L. La mejor clasificación de la MVS fue obtenida utilizando señales de tiempo de 15 segundos y terremotos de magnitudes 3.5 M_L con exponente kernel de 10 y factor de complejidad de 2, mostrando precisión de 0,6 ± 16,5 kilómetros, lo cual es suficientemente bueno para ser utilizado en un sistema de alerta temprana para la ciudad de Bogotá. Se recomienda proveer este modelo con eventos sísmicos recientes, con la finalidad de mejorar su precisión.
Introducción
Este estudio forma parte de una línea de investigación que propone el cálculo de los parámetros hipocentrales de los terremotos mediante el uso de técnicas de aprendizaje automático, con el fin de desarrollar un sistema de alerta temprana para la ciudad de Bogotá. La Sabana de Bogotá y sus alrededores albergan casi un tercio de la población colombiana, siendo el principal centro económico del país con casi el 40% del producto interno bruto (Ojeda et al., 2002); por ello es tan importante un sistema de alerta temprana sísmica alrededor de Bogotá, y la profundidad del sismo es uno de los principales parámetros de este sistema.
La forma común de calcular los parámetros hipocentrales, incluyendo la profundidad del terremoto, consiste en aplicar modelos de velocidad para diferentes capas de roca de la tierra y procesar las señales de tiempo de viaje de las ondas P y S registradas en las estaciones sísmicas (Zhang et al., 2014). En los últimos años, se han desarrollado enfoques alternativos basados en técnicas de aprendizaje automático, la mayoría de ellos utilizando algoritmos genéticos (GA) y lógica difusa (FL). Los enfoques FL permiten una exploración eficiente del espacio de búsqueda (Lin y Sanford, 2001), mientras que los AG se utilizan principalmente para determinar las coordenadas X, Y, Z del hipocentro del terremoto (Sambrige y Gallagher, 1993). Ochoa et al. (2014) y Ochoa et al. (2017) aplicaron con éxito métodos de máquinas de vectores de soporte (SVM) en estimaciones de parámetros hipocentrales utilizando sólo unos pocos segundos de señal registrados en una única estación sismológica logrando resultados fiables.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículos:
Las tecnologías de la información y las comunicaciones en el posconflicto colombiano
Artículos:
Estudio relevante disponible sobre análisis de tensiones y predicción de resistencia estática de laminados de fibra metálica
Artículos:
Sintetizar patrones de suma y diferencia con una red de alimentación de baja complejidad compartiendo las excitaciones de los elementos
Artículos:
Técnicas avanzadas y diseño de antenas para la conformación de pulsos en la radio cognitiva UWB
Artículos:
Clasificación de objetivos en precesión espacial basada en perfiles de alcance de alta resolución del radar
Artículos:
La curva S como herramienta para la planeación y control de procesos de construcción: casos de estudio
Artículos:
Investigación sobre control de costos de proyectos de construcción con base en la teoría de construcción sin pérdidas y BIM : caso práctico
Artículos:
Una metodología para el diseño de un currículo orientado a las competencias
Libros:
Física. Ondas eléctromagnéticas