Los modelos directos de usuarios pueden predecir el número de usuarios del transporte ferroviario urbano a nivel de estación. Las investigaciones anteriores indican que la modelización directa del número de usuarios del transporte ferroviario urbano utiliza diferentes métodos de procesamiento de áreas de cobertura solapada (como el método ingenuo o los polígonos de Thiessen), unidades de análisis de áreas (como el grupo de bloques censales y el tramo censal) y diversos modelos de regresión (como la regresión lineal y la regresión binomial negativa). Sin embargo, la selección de estos métodos y modelos parece arbitraria. El objetivo de esta investigación es sugerir métodos de selección de modelos de usuarios de transporte ferroviario urbano a nivel de estación y evaluar el impacto de esta selección en los resultados del modelo de usuarios y la precisión de la predicción. Se recopilaron datos sobre el número de usuarios del transporte ferroviario urbano en 2010 en cinco ciudades: Nueva York, San Francisco, Chicago, Filadelfia y Boston. Utilizando las características del entorno construido como variables independientes y el número de pasajeros en las estaciones como variable dependiente, se realizó un análisis para examinar las diferencias en el rendimiento del modelo de predicción del número de pasajeros. Nuestros resultados muestran que un gran solapamiento de las áreas de cobertura circular afectará en gran medida a la precisión de los modelos. El método de división equitativa aumenta significativamente la precisión de los modelos. La mayoría de los modelos muestran que los modelos aditivos generalizados tienen menores errores porcentuales absolutos medios (MAPE) y mayores valores R2 ajustados. En comparación, los valores del criterio de información de Akaike (AIC) de los modelos binomiales negativos son inferiores. La influencia de las distintas unidades básicas de análisis espacial en los resultados de los modelos es marginal. Por lo tanto, la selección de la unidad básica de superficie puede utilizar los datos existentes. En cuanto a la selección de modelos, los modelos avanzados parecen obtener mejores resultados que los modelos de regresión lineal.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Video:
Inventarios en la cadena de suministros - Gestión de inventario
Artículo:
Reconocimiento rápido del estilo de conducción en el seguimiento de vehículos mediante aprendizaje automático y datos de la trayectoria del vehículo
Artículo:
Tecnología de videovigilancia inteligente en el transporte inteligente
Artículo:
Predicción de la frecuencia de colisiones en autopistas urbanas teniendo en cuenta los tipos de colisión mediante datos de tráfico en tiempo real
Artículo:
Transporte aéreo de emergencia en el marco de COVID-19: Impacto, medidas y futuro