Los modelos directos de usuarios pueden predecir el número de usuarios del transporte ferroviario urbano a nivel de estación. Las investigaciones anteriores indican que la modelización directa del número de usuarios del transporte ferroviario urbano utiliza diferentes métodos de procesamiento de áreas de cobertura solapada (como el método ingenuo o los polígonos de Thiessen), unidades de análisis de áreas (como el grupo de bloques censales y el tramo censal) y diversos modelos de regresión (como la regresión lineal y la regresión binomial negativa). Sin embargo, la selección de estos métodos y modelos parece arbitraria. El objetivo de esta investigación es sugerir métodos de selección de modelos de usuarios de transporte ferroviario urbano a nivel de estación y evaluar el impacto de esta selección en los resultados del modelo de usuarios y la precisión de la predicción. Se recopilaron datos sobre el número de usuarios del transporte ferroviario urbano en 2010 en cinco ciudades: Nueva York, San Francisco, Chicago, Filadelfia y Boston. Utilizando las características del entorno construido como variables independientes y el número de pasajeros en las estaciones como variable dependiente, se realizó un análisis para examinar las diferencias en el rendimiento del modelo de predicción del número de pasajeros. Nuestros resultados muestran que un gran solapamiento de las áreas de cobertura circular afectará en gran medida a la precisión de los modelos. El método de división equitativa aumenta significativamente la precisión de los modelos. La mayoría de los modelos muestran que los modelos aditivos generalizados tienen menores errores porcentuales absolutos medios (MAPE) y mayores valores R2 ajustados. En comparación, los valores del criterio de información de Akaike (AIC) de los modelos binomiales negativos son inferiores. La influencia de las distintas unidades básicas de análisis espacial en los resultados de los modelos es marginal. Por lo tanto, la selección de la unidad básica de superficie puede utilizar los datos existentes. En cuanto a la selección de modelos, los modelos avanzados parecen obtener mejores resultados que los modelos de regresión lineal.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Análisis de la distribución espacial y temporal de los accidentes de tráfico mediante datos basados en SIG en Harbin
Otro:
El futuro de un transporte de mercancía y logística sostenibles
Artículo:
Análisis del proceso de transporte por carretera de residuos municipales sobre la base de una empresa de servicios seleccionada: Clasificación e identificación de residuos
Artículo:
Diseño y análisis de sistemas colaborativos de crucero de vehículos aéreos de superficie no tripulados
Artículo:
Análisis y modelización de la simulación de maniobras de buques en olas generadas por deslizamientos de tierra
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
Los web services como herramienta generadora de valor en las organizaciones
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Libro:
Ergonomía en los sistemas de trabajo