En este artículo se presenta un método efectivo para resolver ecuaciones integrales de Volterra no lineales bidimensionales de segundo tipo, que surgen del problema de torsión para una barra larga que consiste en un material viscoelástico no lineal con una sección transversal elíptica fija. Primero, se discute la existencia de una solución única para este problema, y luego encontramos la solución de una ecuación integral de Volterra no lineal bidimensional (NT-DVIE) utilizando el método de bloque por bloque (B-by-BM) y el método del núcleo degenerado (DKM). Se presentan ejemplos numéricos y se comparan sus resultados con la solución analítica para demostrar la validez y aplicabilidad del método.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Existencia de soluciones de ecuaciones diferenciales fraccionarias con operador -Laplaciano en resonancia
Artículo:
Sobre la existencia de multiplicidad de soluciones débiles para una nueva clase de sistemas de valores límite fraccionarios no lineales a través de un enfoque variacional.
Artículo:
Resultados de existencia para ecuaciones de diferencia fraccional impulsivas con condiciones de frontera antiperiódicas.
Artículo:
Reglas óptimas para la programación de una sola máquina con averías estocásticas
Artículo:
Algunas interacciones entre extensiones de Hopf Galois y anillos no conmutativos
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Libro:
Ergonomía en los sistemas de trabajo
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Los web services como herramienta generadora de valor en las organizaciones