Proponemos un esquema de clasificación de artefactos basado en un modelo combinado de red neuronal profunda y convolucional (DCNN), para identificar automáticamente artefactos cardíacos y oculares a partir de datos neuromagnéticos, sin necesidad de registros adicionales de electrocardiograma (ECG) y electrooculograma (EOG). A partir de componentes independientes, el modelo utiliza la información espacial y temporal de los datos descompuestos de magnetoencefalografía (MEG). En total, se utilizaron 7122 muestras tras el aumento de datos, en las que las grabaciones MEG relacionadas y no relacionadas con tareas de 48 sujetos sirvieron como base de datos para este estudio. Se aplicó el rechazo de artefactos mediante el modelo combinado, que alcanzó una sensibilidad y especificidad del 91,8
y 97,4%, respectivamente. La precisión global del modelo se validó mediante una prueba de validación cruzada y reveló una precisión media del 94,4%, lo que indica una alta fiabilidad de la eliminación de artefactos basada en DCNN en experimentos MEG relacionados con tareas y no relacionados con tareas. Las principales ventajas del método propuesto son las siguientes: (1) es un flujo de trabajo totalmente automatizado e independiente del usuario para la clasificación de artefactos en datos MEG; (2) una vez que el modelo está entrenado no hay necesidad de grabaciones de señales auxiliares; (3) la flexibilidad en el diseño del modelo y el entrenamiento permite varias modalidades (MEG/EEG) y varios tipos de sensores.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículos:
Análisis de la destrucción de sobrecarga en el límite lateral de la cámara mediante el método de elementos finitos viscoelástico-plástico.
Artículos:
Investigaciones numéricas y de campo sobre el riesgo de estallido de rocas adyacentes a pilares de carbón irregulares y fallas.
Artículos:
Modelo de predicción de estallidos de roca basado en peso de entropía integrado con red neuronal BP de relación gris.
Artículos:
Estudio sobre las reglas de cambio de factores que afectan la pérdida de gas durante el muestreo de circulación inversa de aire en lechos de carbón.
Artículos:
Estudio experimental sobre el fallo de descarga triaxial de carbón-roca compuesta profunda.
Artículos:
Comportamiento del aguacate Hass liofilizado durante la operación de rehidratación
Artículos:
Caracterización estructural de la materia orgánica de tres suelos provenientes del municipio de Aquitania-Boyacá, Colombia
Informes y Reportes:
Técnicas de recuperación de suelos contaminados
Artículos:
Una revisión de la etiopatogenia y características clínicas e histopatológicas del melanoma mucoso oral.