Este artículo estudia la estimación de los parámetros de la distribución generalizada de Gompertz basada en una muestra de conjuntos clasificados (RSS). Se consideran enfoques de máxima verosimilitud (ML) y bayesianos. Se construyen intervalos de confianza aproximados para los parámetros desconocidos utilizando tanto la aproximación normal a la distribución asintótica de los estimadores de ML como métodos de remuestreo (bootstrapping). Se obtienen estimaciones bayesianas e intervalos de credibilidad de los parámetros desconocidos utilizando la evolución diferencial de cadenas de Markov Monte Carlo y los métodos de Lindley. Los métodos propuestos se comparan a través de estudios de simulaciones de Monte Carlo y un ejemplo que emplea datos reales. El rendimiento de las estimaciones de ML y Bayes mejora bajo RSS en comparación con una muestra aleatoria simple (SRS) independientemente del tamaño de la muestra. Las estimaciones bayesianas superan a las estimaciones de ML para muestras pequeñas, mientras que ocurre lo contrario para muestras moderadas y grandes.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículos:
Redes de pequeñas empresas en el ámbito de la agricultura ecológica: estrategias y herramientas de gestión
Manuales:
Guía de los fundamentos de la dirección de proyectos (Guía PMBOK®)
Tesis y Trabajos de grado:
Estudio de inteligencia de mercados plan estratégico exportador Venezuela y Argentina, empresa : promin Ltda.
Tesis y Trabajos de grado:
Benchmarking y marketing estratégico de ciudades
Artículos:
Lean seis sigma : una nueva filosofía de producción
Artículos:
Comportamiento del aguacate Hass liofilizado durante la operación de rehidratación
Artículos:
Caracterización estructural de la materia orgánica de tres suelos provenientes del municipio de Aquitania-Boyacá, Colombia
Informes y Reportes:
Técnicas de recuperación de suelos contaminados
Artículos:
Una revisión de la etiopatogenia y características clínicas e histopatológicas del melanoma mucoso oral.