En este trabajo, estudiamos la condición suficiente para la convergencia del método de transformada diferencial reducida para ecuaciones diferenciales no lineales. La principal ventaja de este método es su capacidad y flexibilidad para resolver problemas lineales y no lineales de manera adecuada y sencilla, y obtener soluciones tanto numérica como analíticamente. Se discuten brevemente enfoques simples del método de transformada diferencial reducida y los resultados de convergencia para diferentes clases de ecuaciones diferenciales como ordinarias lineales y no lineales, parciales, fraccionarias y sistemas de ecuaciones diferenciales. Se verifican ocho ejemplos para confirmar los resultados de convergencia, así como la fortaleza y eficiencia del método.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Análisis Comparativo Cualitativo de Conjuntos Difusos (fsQCA) aplicado al Mecanismo de Impulso del Crecimiento de la Productividad Total de los Factores.
Artículo:
Comunidades dinámicas en el mercado de valores
Artículo:
Nuevos criterios para funciones meromorfas multivalentes alfa-convexas.
Artículo:
Una nueva modificación del Método de Descomposición de Adomian para Ecuaciones Integrales de Volterra de Segundo Tipo.
Artículo:
Controlador dinámico de modo deslizante con estructura variable para maniobras rápidas de actitud de satélites