Este documento se centra principalmente en la existencia, estabilidad y bifurcaciones de soluciones periódicas de ciertas ecuaciones diferenciales impulsivas escalares en la cinta de Möbius. Se obtienen condiciones suficientes para garantizar la existencia y estabilidad de órbitas periódicas de un lado y de dos lados de ecuaciones diferenciales impulsivas en la cinta de Möbius mediante el uso de funciones de desplazamiento. Además, también se estudia la bifurcación doble periódica utilizando el mapa de Poincaré.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículos:
Solución explícita de la ecuación de la telegrafía basada en el método del núcleo reproductor.
Artículos:
Bifurcación global para un problema de Neumann de segundo orden con un término de conjunto valuado
Artículos:
Control tolerante a fallas para sistemas de intervalo de orden fraccional con fallas en los sensores.
Artículos:
Un análisis del modelo de escorrentía basado en la física de la Cuenca del Río Querétaro
Artículos:
El Método -Transform y los Operadores de Diferencia Fraccional Tipo Delta
Artículos:
Comportamiento del aguacate Hass liofilizado durante la operación de rehidratación
Artículos:
Caracterización estructural de la materia orgánica de tres suelos provenientes del municipio de Aquitania-Boyacá, Colombia
Informes y Reportes:
Técnicas de recuperación de suelos contaminados
Artículos:
Una revisión de la etiopatogenia y características clínicas e histopatológicas del melanoma mucoso oral.