La estructura cristalina del compuesto ácido 2-E-((4-hidroxifenil) diazenil) benzóico se resolvió por medio del método de fase intrínseca usando datos de difracción de rayosX de monocristal, encontrando que la molécula cristaliza en el sistema cristalino ortorrómbico con grupo espacial Pbca. Dentro de su celda unidad hay cuatro moléculas por unidad a simétrica que son confórmeros moleculares.Estos confórmeros forman hélices beta a lo largo de la dirección [010]. A partir de los datos estructurales se realizó el cálculo de superficies de Hirshfeld determinando, a partir de ellas, sus correspondientes diagramas de huellas dactilares bidimensionales, lo que permitió estudiar las interacciones intermoleculares que más contribuyen al empaquetamiento cristalino. Así, se pudo determinar que la principal contribución a la superficie general está dada por los contactos H···H (34,8%), seguida de interacciones O···H/H···O (27%) y C···H/H···C (18,6%). También fueron calculadas las redes energéticas de interacción con un nivel de teoría DFT/B3LYP/6-31G(d,p), permitiendo cuantificar los valores de cada componente que aportan a la energía total, siendo las interacciones de dispersión(-57,5 kJ/mol) las que más contribuyen en la formación del empaquetamiento cristalino para este compuesto.
La cristalografía de rayos X de monocristal es una técnica capaz de determinar con precisión la disposición atómica en el espacio tridimensional que conforman los materiales cristalinos [1]. Por medio de la interacción radiación-materia es posible la determinación de los parámetros posicionales y térmicos de los átomos que conforman una molécula en un sistema cristalino dado, lo cual permite elucidar completamente la estructura interna de los cristales [2].
Todos los cristales pueden describirse como una red tridimensional de puntos, con un grupo de átomos, moléculas o iones posicionados en cada uno de los puntos de la red. La porción más pequeña de la red se denomina celda unidad, la cual se repite ordenadamente a lo largo de las tres direcciones espaciales [2]; cuando esta se repite ilimitadamente en el espacio se forma la estructura cristalina [3]. Los parámetros de la celda unitaria se describen por la longitud de sus aristas (a, b y c) y los ángulos (a, p y y) formados entre ellas [3]. Existen muchas variedades de cristales, tanto naturales como sintéticos (diamantes, sal común, cuarzo, azúcar, etc.), y debido a sus diferentes propiedades físico-químicas, tienen innumerables usos en tecnología [4], farmacéutica [5], bioquímica, medicina [6] y procesos supramoleculares [7]. La formación de los cristales se debe a una combinación de interacciones covalentes y no covalentes como los enlaces de hidrógeno, ion-ion, ion-dipolo, dipolo-dipolo, entre otros [8].
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Infografía:
Leyes de la Termodinámica
Artículo:
Recubrimientos de aluminio-silicio realizados por deposición química de vapor en lecho fluidizado sobre el acero inoxidable AISI 316
Artículo:
Determinación de las condiciones óptimas para la obtención de un fertilizante fosfatado a partir de la roca fosfórica cubana
Artículo:
Influencia de los aditivos minerales en el efecto inhibidor de la corrosión de los nitritos
Artículo:
Optimización de la glucólisis en PET utilizando líquido iónico [Bmin]ZnCl3 como catalizador y evaluación cinética
Artículo:
Medicina de la conservación ¿una disciplina para médicos veterinarios?
Libro:
Tratamiento de aguas para consumo humano : plantas de filtración rápida. Manual II : diseño de plantas de tecnología apropiada
Artículo:
Configuración de los valores de María, antes y después de la violación, en Satanás de Mario Mendoza
Showroom:
Panel fotovoltaico: Dimensionamiento y funcionamiento