En este artículo se presenta el estudio numérico y comparativo del efecto de turbulencia en codos y dobleces para diámetros de una pulgada, mediante CFD y bajo las mismas condiciones de trabajo (velocidad, presión y temperatura), para determinar la fluctuación en la turbulencia de energía cinética entre estos dos accesorios variando los modelos de turbulencia. Se emplearon dos metodologías para esta investigación, kappa-épsilon (k-ε) y kappa-omega (k-ω). El método (k-ε) se divide en tres modelos: estándar, RNG y realizable, en los cuales se genera turbulencia de energía cinética y de disipación. El método (k-ω) también posee tres variantes: estándar, SST, BSL. El trabajo presenta una mayor turbulencia para el método de (k-ε) en energía cinética y de disipación bajo el modelo estándar tanto para codo como doblez, mientras que en el método (k-ω) se produce una mayor turbulencia de energía cinética en el modelo BSL para ambos accesorios, al igual que en el método (k-ε),el modelo estándar de (k-ω) representa una mayor turbulencia de frecuencia.
I. INTRODUCCIÓN
El movimiento de los fluidos a través de conductos cerrados, los cambios de sección y, sobre todo, el cambio de dirección del flujo, son las causas que generan turbulencia. Mediante esta investigación se busca comprender el efecto de turbulencia en codos y doblez, para observar si la curvatura de estos objetos modifica la turbulencia. Se han realizado varios estudios sobre estas curvaturas, la mayoría de los cuales se centraron en la pérdida de presión entre la entrada y la salida del codo y el perfil de velocidad promediada en el tiempo, desde un punto de vista de la aplicación industrial.
Los fluidos turbulentos son fenómenos complejos estudiados por la mecánica de fluidos, la mayoría de los flujos existentes en la vida diaria son turbulentos. Este tipo de flujo es debido a la variación de presión y velocidad, por este motivo se conoció que la inestabilidad y el desorden resultantes no son las únicas propiedades definitorias de la turbulencia [1].
Según Davidson [2], los fluidos turbulentos aumentan la difusividad del agua, con lo cual se incrementa la resistencia del fluido (fricción en las paredes de la tubería) y la transferencia de calor tanto en flujos internos, como en canales y tuberías. El flujo turbulento es siempre tridimensional e inestable. Sin embargo, cuando las ecuaciones se promedian en el tiempo, se trata al flujo como bidimensional. Las ecuaciones tridimensionales de Reynolds promediadas de Navier-Stokes (RANS), se aplican para conocer el método de turbulencia [3].
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Una Desenfoque de Imagen Ciega Eficiente Utilizando una Función de Suavizado
Artículo:
Estudio de transferencia de calor conjugada en la superficie interior del borde de ataque de un GNV con refrigeración combinada por ducha e impacto
Artículo:
Optimización multiobjetivo de motor térmico irreversible utilizando el algoritmo Smart Bee mutable
Artículo:
Filtro de red neuronal artificial basado en optimización de enjambre de gatos para la eliminación de ruido gaussiano de imágenes de tomografía computarizada.
Artículo:
Análisis de las causas de fallo del eje del rotor de las turbinas de vapor
Libro:
Tratamiento de aguas para consumo humano : plantas de filtración rápida. Manual II : diseño de plantas de tecnología apropiada
Artículo:
Medicina de la conservación ¿una disciplina para médicos veterinarios?
Libro:
Marco de gestión de costos totales. Un enfoque integrado a la gestión de portafolio, programa y proyectos
Libro:
El mundo mágico del vidrio