El artículo trata de la evaluación de la energía de impacto, la tenacidad de entalla y la morfología de las superficies de fractura de las probetas fabricadas mediante la tecnología de sinterización directa de metales por láser. Las probetas sin tratamiento térmico y sin entalla no se rompieron durante el ensayo, por lo que no presentaban superficie de fractura. El tratamiento térmico produjo un aumento de los valores de dureza. Los valores de la energía de impacto tras el tratamiento térmico fueron aproximadamente un 60 % inferiores. En todas las probetas apareció una fractura intergranular dúctil con una morfología de hoyuelos más o menos segmentados. En los lugares donde la unión plástica interna resistía el ensayo, las grietas que quedaban después de que las partículas se desprendieran de la superficie podían verse como cráteres.
INTRODUCCIÓN
La fabricación aditiva hace referencia a un proceso mediante el cual se utilizan datos de diseño 3D digitales para construir un componente en capas depositando material. El término "impresión 3D" se utiliza cada vez más como sinónimo de fabricación aditiva. [1]
Sin embargo, este último es más preciso, ya que describe una técnica de producción profesional que se distingue claramente de los métodos convencionales de extracción de material. En lugar de fresar una pieza de trabajo a partir de un bloque sólido, por ejemplo, la fabricación aditiva construye componentes capa a capa utilizando materiales que están disponibles en forma de polvo fino. Pueden utilizarse distintos metales, plásticos y materiales compuestos. [2,3]
La tecnología se ha aplicado especialmente junto con la creación rápida de prototipos, es decir, la construcción de prototipos ilustrativos y funcionales. En la actualidad, la fabricación aditiva se utiliza cada vez más en la producción en serie. Ofrece a los fabricantes de equipos originales (OEM) de los sectores industriales más variados la oportunidad de crearse un perfil distintivo basado en las nuevas ventajas para el cliente, el potencial de ahorro de costes y la capacidad de cumplir los objetivos de sostenibilidad [4,5]. [4,5]
La figura 1 muestra el principio general del sinterizado por láser. El sistema comienza aplicando una fina capa del material en polvo a la plataforma de construcción. A continuación, un potente rayo láser funde el polvo exactamente en los puntos definidos por los datos de diseño del componente generados por ordenador. A continuación se baja la plataforma y se aplica otra capa de polvo. Una vez más, el material se fusiona con la capa inferior en los puntos predefinidos. [6]
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Aplicaciones de la sericina: una proteina globular proveniente de la seda
Tesis:
Estudio de las condiciones para producir industrialmente envases plásticos a partir de materiales compostables
Artículo:
Estudio experimental de cubiertas de puente tipo sándwich con láminas frontales de GFRP y un núcleo de espuma-red cargado bajo flexión bidireccional
Artículo:
Estudio sobre la influencia de los parámetros de protección catódica por corriente de impulsos del revestimiento de un pozo petrolífero
Artículo:
Procesamiento y validación de películas y laminados recubiertos de proteína de suero a escala semi-industrial como nuevos materiales de envasado de alimentos reciclables con excelentes propiedades de barrera
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Análisis socioeconómico de la problemática de los desechos plásticos en el mar
Artículo:
Los web services como herramienta generadora de valor en las organizaciones