La simulación de la escorrentía pluvial en hidrología mediante inteligencia artificial presenta las relaciones no lineales utilizando redes neuronales. En este estudio, se ha desarrollado una red híbrida presentada como red neuronal modular feedforward (FF-MNN) para predecir la precipitación-escorrentía diaria de la cuenca hidrográfica de Roodan, en el sur de Irán. Esta FF-MNN tiene tres capas: de entrada, oculta y de salida. La capa oculta tiene dos tipos de expertos neuronales o módulos. Se recopilaron datos hidrometeorológicos de la cuenca durante 21 años. Se utilizó el método heurístico para desarrollar la MNN con el fin de explorar la generalización del caudal diario. Se utilizaron dos algoritmos de entrenamiento, a saber, retropropagación con impulso y Levenberg-Marquardt. Se emplearon funciones de transferencia sigmoidea y lineal para explorar el comportamiento óptimo de la red. Se llevaron a cabo evaluaciones de validación cruzada y de incertidumbre predictiva para proteger la sobrecarga y la sobreparametrización, respectivamente. Los resultados mostraron que la FF-MNN podía predecir satisfactoriamente el caudal del arroyo durante el periodo de prueba. El coeficiente de Nash-Sutcliff, el coeficiente de determinación y el error cuadrático medio obtenidos utilizando la MNN durante los periodos de entrenamiento y prueba fueron 0,85, 0,85 y 39,4 y 0,57, 0,58 y 32,2, respectivamente. Las incertidumbres predictivas para ambos periodos fueron de 0,39 y 0,44, respectivamente. En general, el estudio demostró que el FF-MNN puede ofrecer una predicción prometedora de las relaciones lluvia-escorrentía.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículos:
Método eficiente de estimación de parámetros para el problema de mínimos cuadrados no lineales separables.
Artículos:
Optimización y Análisis de Rendimiento del Sistema de Acoplamiento Tren-Tren con Inerters
Artículos:
Reconocimiento de gestos de movimiento humano basado en visión por computadora
Artículos:
Visión por computadora para la interacción humano-computadora utilizando tecnología no invasiva.
Artículos:
Aprendizaje automático de alto rendimiento para la clasificación de datos a gran escala considerando el desequilibrio de clases.
Artículos:
Comportamiento del aguacate Hass liofilizado durante la operación de rehidratación
Artículos:
Caracterización estructural de la materia orgánica de tres suelos provenientes del municipio de Aquitania-Boyacá, Colombia
Informes y Reportes:
Técnicas de recuperación de suelos contaminados
Artículos:
Una revisión de la etiopatogenia y características clínicas e histopatológicas del melanoma mucoso oral.