La dinámica de fluidos de un reactor tubular de polimerización se evalúa mediante la perturbación del trazador. La distribución del tiempo de residencia (F(t)) obtenida experimentalmente parece estar gobernada por fenómenos estocásticos, ya que en torno al valor 1 se observan oscilaciones de F(t) que no pueden explicarse por errores experimentales. Para explicar el comportamiento oscilatorio de F(t), se propuso un modelo estocástico. El modelo depende de tres parámetros distintos: el espesor de la capa estancada situada cerca de las paredes del reactor (1-ϕ); el intervalo de tiempo característico de las fluctuaciones aleatorias, Δt; y la velocidad máxima de flujo de la capa estancada, vm2. Se demuestra que el modelo estocástico representa bastante bien los datos experimentales y que pueden utilizarse parámetros similares para describir los resultados observados en todos los experimentos.
INTRODUCCIÓN
La industria de los polímeros recibió un gran impulso tras la Segunda Guerra Mundial, debido a la necesidad de materiales naturales (caucho natural y lana) y materias primas básicas (acero). El desarrollo de la industria se debe en gran medida a que los materiales poliméricos tienen una amplia gama de propiedades, lo que hace posible una gran variedad de aplicaciones. Sin embargo, esta versatilidad también crea la necesidad natural de controlar o diseñar un material con características muy específicas. Esto es especialmente importante porque, a diferencia de las moléculas que tienen propiedades químicas y físicas bien definidas, la estructura molecular de los materiales poliméricos depende de la forma en que se producen estos materiales.
La ingeniería de reactores de polimerización depende de numerosos aspectos, como la cinética de polimerización (mecanismo de reacción), propiedades físicas de transporte (transferencia de calor y masa), la configuración del reactor y las condiciones de funcionamiento del mismo. En función de estos factores se definen la arquitectura macromolecular y las propiedades morfológicas del producto final.
El reactor tubular es un equipo sencillo sin partes móviles. La eficacia del intercambio de calor es mayor que en un tanque agitado, debido a la mayor relación superficie/volumen. Sin embargo, se desarrolla un perfil de velocidad en todo el reactor. Tanto si el proceso de polimerización se lleva a cabo a granel como en solución, es posible observar el aumento de la viscosidad a medida que aumenta la conversión. La viscosidad dificulta el flujo del medio de reacción, siendo este efecto más crítico en la región próxima a la pared.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Solución de análisis, modelado y simulación de rotor de ventilador de tiro inducido con vibración excesiva: un caso de estudio
Artículo:
Análisis de la evolución de la microestructura durante el tratamiento termomecánico de las chapas de acero de grado X80-X100
Artículo:
Análisis numérico de la forja de un conector para vehículos ligeros a partir de preformas de aleación de magnesio fundidas
Tesis:
Desarrollo y aplicación de un modelo computacional del arranque y operación de un proceso de adsorción por cambios oscilatorios de presión para la deshidratación de etanol azeotrópico
Artículo:
Predicción basada en redes neuronales de los tiempos de desbaste y acabado en un laminador de banda en caliente