La conocida fórmula de Sherman-Morrison-Woodbury es un potente dispositivo para calcular la inversa de una matriz cuadrada. En este trabajo se descubre que la fórmula de Sherman-Morrison-Woodbury puede extenderse a la ecuación integrodiferencial lineal, lo que da lugar a un esquema unificado para descomponer la ecuación integrodiferencial lineal en conjuntos de ecuaciones diferenciales y una ecuación integral. Se presentan dos ejemplos para ilustrar la fórmula de Sherman-Morrison-Woodbury para la ecuación integrodiferencial lineal.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Esquema reversible de ocultación de datos con alta capacidad de incrustación mediante una estrategia semilibre de indicadores
Artículo:
Una solución débil de un problema estocástico no lineal
Artículo:
Aplicación de la Teoría del Control Óptimo a la Dinámica de la Enfermedad de Newcastle en Pollos de Aldea al Considerar a las Aves Silvestres como Reservorio del Virus de la Enfermedad.
Artículo:
Análisis de errores y compensación de la alineación del girocompás para SINS en base móvil
Artículo:
En la resolución de sistemas de ecuaciones diferenciales ordinarias autónomas mediante la reducción a una variable de un álgebra.
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Libro:
Ergonomía en los sistemas de trabajo
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Los web services como herramienta generadora de valor en las organizaciones