El cambio climático ha provocado amenazas a la producción agrícola; los extremos de temperatura y humedad, y otras tensiones abióticas son factores que contribuyen a la etiología de enfermedades y plagas en los cultivos. Sobre el tema, los esfuerzos de investigación recientes se han centrado en predecir cultivos de enfermedades y plagas utilizando técnicas como algoritmos de aprendizaje supervisado. Por ello, en este trabajo presentamos una visión general de los algoritmos de aprendizaje supervisado comúnmente utilizados en agricultura para la detección de plagas y enfermedades en cultivos como maíz, arroz, café, mango, maní y tomate, entre otros, con el objetivo de seleccionar los algoritmos que den el mejor desempeño para el sector agrícola.
1. INTRODUCCIÓN
En la actualidad el rendimiento agrícola se ve afectado por factores de cambio global como: nuevas variedades en los cultivos, cambios en el gusto de los consumidores, causas naturales, y/o eventos antropogénicos [1], [2]. En este sentido, la agricultura está expuesta a los efectos del cambio global, donde su vulnerabilidad depende de factores como los abióticos, los biológicos, los socioeconómicos y los regionales [3]-[5], por lo que las diferentes zonas de la tierra son potencialmente vulnerables al cambio climático y a las pérdidas directas e indirectas de productividad, contribuyendo también a la aparición de enfermedades y plagas [6].
Por otro lado, existe un área de aprendizaje automático, que construye modelos de regresión y clasificación denominados aprendizaje supervisado. Estos algoritmos aprenden a través de ejemplos (entrenamiento de datos), con el objetivo de predecir o detectar un nuevo dato de entrada [7]. El resultado del proceso de aprendizaje (entrenamiento) del algoritmo (redes bayesianas, árbol de decisión, máquina de vectores de apoyo, redes neuronales artificiales, vecinos más cercanos de K, etc) es crear un clasificador (hipótesis o modelo) para el entrenamiento del conjunto de datos.
La idea de utilizar la información como ejemplos ha inspirado a los investigadores a aplicar algoritmos de aprendizaje supervisado para predecir futuras enfermedades y plagas en los cultivos agrícolas [8]. Por ejemplo, los datos recogidos sobre las condiciones meteorológicas, las propiedades de fertilidad del suelo y las propiedades físicas y de gestión de un cultivo de café, pueden utilizarse para predecir la tasa de infección de la roya aún en los primeros días de la cosecha [9].
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
El clasificador de tres clases de señales de llaves de cambio de frecuencia y cambio de fase basadas en la transformación de karhunen-Loeve
Artículo:
Antena de parche en serie para un radar FMCW alojado en un bastón blanco
Artículo:
Cuantificación de la incertidumbre para la respuesta transitoria de la antena equivalente humana utilizando el enfoque de colocación estocástica
Artículo:
Detección de ataques que causan la denegación del servicio de red
Artículo:
Un método de descomposición de dominios de ecuaciones integrales mejoradas con solvers híbridos para el modelado de la radiación electromagnética
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Los web services como herramienta generadora de valor en las organizaciones
Artículo:
Configuración de los valores de María, antes y después de la violación, en Satanás de Mario Mendoza