Contrariamente a lo que mucha gente se imagina, la Edad Media no fue un período muerto para el desarrollo del conocimiento matemático. En este ensayo se presentan dos de los aportes más importantes de los matemáticos medievales como son: la introducción de la notación posicional y de los algoritmos asociados y el surgimiento de métodos no geométricos para la solución de ecuaciones. El primero permitió la universalización de los procedimientos para calcular y el segundo la liberación definitiva del finitismo geométrico ligado a la obra euclidiana.
La oposición entre aritmética mística y racionalismo aristotélico, inspirados respectivamente en Platón y Aristóteles, fue uno de los motores que impulsaron el desarrollo matemático en la Edad Media. Esta tensión junto con la gran influencia del mundo árabe creó el ambiente necesario para que se iniciara la gran transformación que poco a poco condujo a la creación del álgebra y a la superación del finitismo geométrico fundamentado en la obra de Euclides.
Dada la influencia del platonismo, en las nacientes escuelas catequéticas creadas por los cristianos en Alejandría se empieza a cultivar el pensamiento de Platón, quien era considerado como uno de los "elegidos por Dios", ya que a través de su verbo contribuyó a preparar el ambiente propicio para la revelación plena del cristianismo; de ahí que Agustín de Hipona lo considerara como "un cristiano precristiano".
Platón fue en gran medida quien recuperó el pensamiento aritmético de los pitagóricos. La alta Edad Media cristiana occidental estuvo muy influenciada por este genial filósofo griego y sus sucesores, quienes atribuían al número una triple dimensión: matemática, filosófica y mística, de ahí que en la filosofía cristiana el número está en el origen de la creación. Comentando El libro de la sabiduría San Agustín (354-430) sostiene:
"El Creador ha obrado según el número y la medida" y más adelante recuerda: "no es porque la creación se obrara en seis días por lo que el 6 es perfecto (es decir 6 es la suma de todos sus divisores propios 6=1+2+3); es porque el 6 es perfecto por lo que el mundo se hizo en 6 días" (B. Ribemont).
Este papel destacado que ocupaba el número permitió que se desarrollara una aritmología que se sustentaba en la interpretación de los números a la luz de las Sagradas Escrituras. El procedimiento era muy sencillo: dado un número determinado se buscaba en una amplia red de referencias religiosas la presencia de este número. Veamos algunos ejemplos ilustrativos en los que se puede ver claramente la influencia del pitagorismo.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Sincronización compuesta de cuatro sistemas complejos caóticos
Artículo:
Comportamiento global de un sistema discreto anticompetitivo en el plano.
Artículo:
Método de Monitoreo Continuo No Destructivo Utilizando Imágenes de Conductividad Tridimensional Reconstruidas a través de GREIT para Ingeniería de Tejidos.
Artículo:
Análisis del Comportamiento de Deriva Lateral en Tráfico Mixto de Bicicletas: Un enfoque basado en modelos de autómatas celulares
Artículo:
Localización superficial en banda de impurezas con desplazamientos aleatorios e interacciones a larga distancia.
Artículo:
Medicina de la conservación ¿una disciplina para médicos veterinarios?
Libro:
Tratamiento de aguas para consumo humano : plantas de filtración rápida. Manual II : diseño de plantas de tecnología apropiada
Artículo:
Configuración de los valores de María, antes y después de la violación, en Satanás de Mario Mendoza
Showroom:
Panel fotovoltaico: Dimensionamiento y funcionamiento