El rendimiento de los biosensores electroquímicos basados en polímeros conductores (CP), modificados por los fragmentos de enzimas, fue descrito matemáticamente en los modos potenciostático y potenciodinámico de voltaje constante. Los modelos matemáticos se analizaron mediante la teoría de la estabilidad lineal y el análisis de bifurcación. Las condiciones de estabilidad en estado estacionario se dedujeron utilizando los requisitos de estabilidad en estado estacionario para sistemas bidimensionales (para el modo potenciostático) y utilizando el criterio de Routh-Hurwitz (para el modo potenciodinámico de tensión constante). Las causas de las oscilaciones electroquímicas, que son posibles durante el funcionamiento del sensor, son: la influencia de la oxidación electroquímica de los reductores fuertes, que se forman durante la reacción específica entre el polímero y el analito, en la doble capa y también la formación de la forma menos conductora del polímero (para el modo potenciodinámico). Si la detección tiene lugar mediante reacciones autocatalíticas, éstas también son responsables del comportamiento oscilante del proceso.
Introducción
Los polímeros conductores se han investigado intensamente durante las últimas cuatro décadas, en vista de las posibilidades de su aplicación en diversos ámbitos. Una de las aplicaciones más importantes de los compuestos heterocíclicos es la fabricación de sensores electroquímicos y biosensores capaces de determinar diferentes sustancias.
Los polímeros conductores pueden utilizarse como parte de los sensores electroquímicos porque son fácilmente modificables y, por tanto, es relativamente fácil incorporar un grupo funcional, capaz de reaccionar específicamente con el analito. Además, la señal analítica que proporcionan es fácilmente interpretable. En la mayoría de los casos, pueden regenerarse.
Sin embargo, se pueden observar inestabilidades electroquímicas (la inestabilidad oscilatoria y (o) monótona) durante la respuesta del sensor [1-8]. Para poder predecir su posibilidad y el mecanismo de su aparición, necesitamos crear un modelo matemático, que sea capaz de describir el funcionamiento de este sensor e investigarlo, haciéndonos más partícipes del proceso.
Ya hemos hecho un intento de describir el rendimiento de este sensor en modo galvanostático [4], así como los biosensores de otros tipos de rendimiento [6-8]. El objetivo de este trabajo, por tanto, es describir matemáticamente en los modos potenciostático y potenciodinámico (manteniendo la tensión constante) el rendimiento de este sensor.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículos:
Estudio cronoamperométrico de la transferencia de triazinas a través de la interfase de dos soluciones electrolíticas inmiscibles
Artículos:
Efecto de la concentración y temperatura en la disolución de poliestireno expandido usando solventes naturales
Artículos:
Hidrogenación de benceno en fase gaseosa: análisis termodinámico, diseño y evaluación de un sistema reacción-separación/reciclo
Artículos:
Funciones químicas como funciones matemáticas
Tesis y Trabajos de grado:
Estudios cinéticos sobre la eterificación de alquenos tipo C5 hacia el éter combustible TAME
Artículos:
Comportamiento del aguacate Hass liofilizado durante la operación de rehidratación
Artículos:
Caracterización estructural de la materia orgánica de tres suelos provenientes del municipio de Aquitania-Boyacá, Colombia
Informes y Reportes:
Técnicas de recuperación de suelos contaminados
Artículos:
Una revisión de la etiopatogenia y características clínicas e histopatológicas del melanoma mucoso oral.