Biblioteca122.739 documentos en línea

Artículos

Methods for estimating agricultural cropland yield based on the comparison of NDVI images analyzed by means of Image segmentation algorithms: A tool for spatial planning decisionsMétodos de estimación del rendimiento de tierras de cultivo basados en la comparación de imágenes NDVI analizadas mediante algoritmos de segmentación de imágenes: Una herramienta para las decisiones de planificación espacial

Resumen

Este estudio de investigación muestra una comparación entre el rendimiento de diferentes algoritmos de procesamiento de imágenes digitales basados en métodos de segmentación de imágenes para procesar imágenes multiespectrales satelitales de Índice de Vegetación de Diferencia Normalizada NDVI con el fin de estimar el rendimiento de las tierras de cultivo como una propuesta para apoyar las decisiones de planificación espacial. Las imágenes multiespectrales NDVI fueron capturadas del satélite Sentinel-2 L2-A con características distintivas, para ser procesadas a través de estos algoritmos implementados en una interfaz de software propia y amigable desarrollada en MATLAB App Designer. Estos se basan en la detección del color de la imagen, utilizando tres técnicas: el método de umbralización rectangular, el método de umbralización simple y la segmentación mediante el clasificador discriminante Mahalanobis. Las imágenes segmentadas se utilizaron para calcular el rendimiento de las tierras de cultivo en función de las variaciones del NDVI y las características de cada imagen analizada mediante un modelo lineal que asignaba un rendimiento a cada área segmentada en función de rangos de valores NDVI. La precisión del algoritmo se determinó en función del rendimiento esperado de las tierras de cultivo. Los resultados muestran que el método de umbralización rectangular tiende a promediar el valor del rendimiento de las tierras de cultivo en imágenes poco uniformes. En cambio, los métodos de umbralización por píxel y Mahalanobis mostraron un mejor rendimiento en imágenes NDVI muy poco uniformes, con desviaciones inferiores al 8% en comparación con el rendimiento esperado. Se puede concluir que el método de umbralización rectangular podría ser una herramienta de menor costo computacional, aunado al hecho de que la demarcación de áreas rectangulares es más fácil para delimitar e identificar para un agricultor en cualquier área cultivada real, facilitando la implementación de planes de apoyo para planificación espacial. Se propone utilizar el método de umbralización rectangular como herramienta de planificación, mientras los demás métodos pueden utilizarse para realizar estimaciones más precisas.

  • Tipo de documento:
  • Formato:pdf
  • Idioma:Inglés
  • Tamaño:4936 Kb

Cómo citar el documento

Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.

Este contenido no est� disponible para su tipo de suscripci�n

Información del documento

  • Titulo:Methods for estimating agricultural cropland yield based on the comparison of NDVI images analyzed by means of Image segmentation algorithms: A tool for spatial planning decisions
  • Autor:Hernández Molina, David D.; Gulfo Galaraga, Julio M.; López López, Ana Milena; Serpa Imbett, Claudia M.
  • Tipo:Artículos
  • Año:2023
  • Idioma:Inglés
  • Editor:Universidad de Tarapacá
  • Materias:Acetamida
  • Descarga:0