El sistema brasileño de generación y transmisión de energía es bastante peculiar en su dimensión y características. Como tal, puede considerarse único en el mundo. Se trata de un sistema hidrotérmico de alta dimensión con enorme participación de centrales hidroeléctricas. Esta fuerte dependencia de los regímenes hidrológicos implica incertidumbres relacionadas con la planificación energética, requiriendo una adecuada modelización de las series temporales hidrológicas. Esto se lleva a cabo mediante simulaciones estocásticas de series mensuales de afluencia utilizando la familia de modelos Autorregresivos Periódicos, PAR(p), uno para cada periodo (mes) del año. En este trabajo se muestran los problemas de ajuste de estos modelos por el sistema actual, en particular la identificación del orden autorregresivo "p" y la estimación de los parámetros correspondientes. A continuación se propone un nuevo enfoque para ajustar tanto el orden del modelo como la estimación de los parámetros de los modelos PAR(p), utilizando una técnica computacional no paramétrica, conocida como Bootstrap. Esta técnica permite estimar intervalos de confianza fiables para los parámetros del modelo. Los resultados obtenidos utilizando el Método Parsimonioso Bootstrap de Momentos (PBMOM) produjeron no sólo órdenes de modelos más parsimoniosos, sino también escenarios estocásticos adherentes y, a largo plazo, conducen a un mejor uso de los recursos hídricos en la planificación de la operación energética.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Sincronización en tiempo finito de redes acopladas híbridas singulares
Artículo:
Control de seguimiento de sistemas no lineales conmutados en cascada
Artículo:
Cálculo de las tasas de liberación de energía de una grieta casi circular
Artículo:
Descomposición de banco de filtros con preacondicionamiento utilizando marcos ajustados normalizados estructurados.
Artículo:
Algoritmo numérico eficiente para la solución de una ecuación integral de Volterra no lineal en dos dimensiones que surge del problema de torsión.