Biblioteca122.739 documentos en línea

Artículo

Gradient-based stochastic optimization methods in bayesian experimental designMétodos de optimización estocástica basados en gradientes en diseños experimentales bayesianos

Resumen

En este artículo se desarrollan métodos de optimización estocástica basados en gradientes para el diseño de experimentos sobre un espacio de parámetros continuo. Dado un estimador de Monte Carlo de ganancia de información esperada, se utiliza un análisis de perturbación infinitesimal para obtener los gradientes de este estimador. así, se está en la capacidad de formular dos enfoques de optimización estocástica basados en gradientes: la aproximación estocástica Robbins-Monro y la aproximación promedio de muestras combinada con un método determinístico cuasi-newtoniano.

Una aproximación de caos polinomial del modelo anticipado (forward model) acelera las evaluaciones objetivo y gradiente en ambos casos. Se discute la implementación de estos métodos y se conduce una comparación empírica de su desempeño. Para demostrar el diseño en un escenario no lineal con modelos anticipados de ecuaciones diferenciales parciales, se usa el problema de colocación del sensor para inversión de fuente.

  • Tipo de documento:
  • Formato:pdf
  • Idioma:Inglés
  • Tamaño:5360 Kb

Cómo citar el documento

Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.

Este contenido no est� disponible para su tipo de suscripci�n

Información del documento