El artículo presenta los resultados de la modelización física y numérica de los procesos de tratamiento termoplástico de un acero experimental de fase compleja (CP). Las pruebas numéricas se llevaron a cabo utilizando un programa informático comercial, ThermoCalc. A partir de los resultados de los ensayos obtenidos, se estableció la temperatura de austenitización. El modelado físico se realizó utilizando un dilatómetro DIL 805A/D y el sistema Gleeble 3800. Se determinaron las temperaturas características del acero y el tamaño de grano de la austenita primaria. Las probetas también se sometieron a exámenes metalográficos y a ensayos de dureza Vickers. Los resultados obtenidos sirvieron para construir un diagrama CCT real del acero ensayado.
INTRODUCCIÓN
El desarrollo de la industria automovilística insta a los diseñadores a centrar sus actividades en la reducción de la masa de los automóviles que se van a fabricar, lo que se traduce en una reducción significativa del consumo de combustible y de las emisiones de gases de escape nocivos a la atmósfera. La consecuencia de ello es la búsqueda de nuevos materiales de construcción para la fabricación de chapas metálicas de alta resistencia y deformabilidad ingenieril, que aseguren la obtención de carrocerías ligeras y resistentes [1 - 2]. Esta dirección es coherente con la tendencia general de desarrollo de la metalurgia en Polonia [3]. Entre los aceros modernos para carrocerías se pueden distinguir dos grupos. El primer grupo está formado por los aceros convencionales de alta resistencia (HSS).
Este incluye: Aceros libres de intersticios (IF), Aceros isotrópicos (IS), Aceros endurecidos al horno (BH), Aceros C-Mn (carbono-manganeso) y Aceros de alta resistencia y baja aleación (HSLA). El segundo grupo está formado por los aceros avanzados de alta resistencia (AHSS): Aceros de doble fase (DP); aceros de fase compleja (CP); aceros TRIP (Transformation Induced Plasticity); y TMS (aceros martensíticos) [4 - 8].
Los aceros CP se caracterizan por su resistencia a la tracción de aproximadamente 800 MPa, y a menudo incluso más. La elevada resistencia del acero se consigue gracias al contenido de ferrita de grano fino y bainita intersticial en la microestructura y al endurecimiento por dispersión mediante precipitados de carburos y nitruros. Para obtener precipitados de grano fino se utilizan adiciones de niobio, titanio o vanadio. Los aceros de este tipo se distinguen por su buena deformabilidad y su gran capacidad para absorber energía durante una colisión. Gracias a estas propiedades, los aceros CP encuentran aplicación como material para la producción de elementos de construcción que absorben la energía de las colisiones, especialmente las colisiones laterales.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Evaluación del grado de conversión, la resistencia a la microtracción y las propiedades mecánicas de tres adhesivos dentales de grabado y aclarado
Artículo:
Estudio sobre la hidratación y las propiedades mecánicas de materiales de yeso reciclado mezclados con cemento Portland
Artículo:
Efecto del cambio del tiempo de deposición sobre la dirección secundaria y la forma anormal del crecimiento de los granos de las películas delgadas de SnO2
Artículo:
Resistencia de las briquetas de concentrado de Cu y materiales carbonosos
Artículo:
Influencia del límite de grano en el crecimiento de grietas por fatiga de la aleación de aluminio 7050-T7451 basada en el método de la escala de tiempo pequeña