El daño hepático inducido por fármacos (DILI) es la principal causa de fracaso de los ensayos clínicos y de retirada de fármacos aprobados tras su comercialización. Evaluar la hepatotoxicidad mediante experimentos con animales o células en la fase inicial de desarrollo de un fármaco es muy costoso y requiere mucho tiempo. En este estudio, se desarrolló un modelo in silico basado en la estrategia de toma de decisiones conjunta para la evaluación de DILI utilizando un conjunto de datos relativamente grande de 2608 compuestos. Se desarrollaron cinco modelos de consenso con descriptores PaDEL y huellas dactilares PubChem, Substructure, Estate y Klekota-Roth, respectivamente. Se obtuvieron submodelos para cada modelo de consenso mediante optimización conjunta. Los parámetros y características de cada submodelo se optimizaron conjuntamente basándose en el algoritmo de optimización híbrida de enjambre de partículas cuánticas (HQPSO). El dominio de aplicación (AD) basado en el método de frecuencia ponderada y distancia (FWD) y el índice de similitud de Tanimoto mostraron el amplio AD de los modelos de consenso calificados. Los modelos de consenso cualificado integraron un modelo de toma de decisiones conjunta, y se utilizó el principio de mayoría abrumadora para mejorar el rendimiento de los modelos de consenso. El estrechamiento del ámbito de aplicación causado por el principio de mayoría aplastante se resolvió con éxito mediante la toma de decisiones conjunta. El modelo propuesto predijo con éxito el 99,2% de los compuestos del conjunto de prueba, con una precisión del 80,0%, una sensibilidad del 83,9 y una especificidad del 73,3%. Para un conjunto de validación externa que contenía 390 compuestos recogidos de DILIrank, se predijo con éxito el 98,2% de los compuestos con una precisión del 79,9%, una sensibilidad del 97,1% y una especificidad del 66,0%. Además, se identificaron 25 subestructuras privilegiadas responsables de DILI a partir de las huellas dactilares de Substructure, PubChem y Klekota-Roth. Estas subestructuras privilegiadas pueden considerarse alertas estructurales en la evaluación de la hepatotoxicidad. En comparación con los principales estudios publicados, nuestro método presenta ciertas ventajas en cuanto al tamaño de los datos, la transparencia y la estandarización del proceso de modelización y la precisión y credibilidad de los resultados de la predicción. Se trata de una herramienta prometedora para el cribado virtual en la fase inicial del desarrollo de fármacos.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Estudio 3D-QSAR de una serie de inhibidores de la quinasa VEGFR-2: Compuestos de Indolin-2-Ones Sustituidos por 3-Pirrol
Artículo:
Efectos críticos de los parámetros de ahumado sobre los niveles de hidrocarburos aromáticos policíclicos en el pescado y los productos cárnicos ahumados tradicionalmente en Finlandia
Artículo:
Preparación de Polímeros Magnéticos de Impresión Molecular para el Reconocimiento Selectivo y la Determinación de Clenbuterol en Muestras de Cerdo
Artículo:
Determinación Rápida y Sensible de la Oxidación de Lípidos Utilizando el Kit de Reactivos Basado en Espectrofotometría (FOODLABfat System)
Artículo:
Síntesis y Actividad Moduladora de la Resistencia Antimicrobiana de Derivados de la 2,4-Dinitrofenilhidrazona como Agentes contra Algunos Patógenos Humanos ESKAPE