La gestión de los accidentes de tráfico como enfoque para mejorar la seguridad pública y reducir las pérdidas económicas ha recibido la atención pública durante mucho tiempo, entre los cuales la predicción de accidentes de tráfico tras el impacto (TAPIP) es uno de los procedimientos más importantes. Sin embargo, los sistemas y metodologías existentes para la TAPIP son insuficientes para abordar el problema. Entre sus inconvenientes se encuentran el hecho de ignorar el proceso de recuperación tras el despeje y no realizar una predicción exhaustiva tanto en el dominio temporal como en el espacial. Con este fin, construimos un modelo TAPIP de 3 etapas en autopistas, utilizando la tecnología de redes neuronales con picos (SNNs) y redes neuronales convolucionales (CNNs). Dividiendo la vida del accidente en dos fases, es decir, fase de limpieza y fase de recuperación, el modelo extrae características en cada fase y logra la predicción de variables espacio-temporales post-impacto (por ejemplo, tiempo de limpieza, tiempo de recuperación y longitud de cola acumulada). El marco aprovecha las SNN para capturar de forma eficiente las características espaciotemporales del accidente y las CNN para representar con precisión el entorno del tráfico. Integrado con un mecanismo de adaptación y actualización, todo el sistema funciona de forma autónoma y en línea, y continúa mejorando durante su uso. Mediante pruebas con un nuevo conjunto de datos CASTA relativo a accidentes de tráfico en autopistas de todo el estado de California recopilados en cuatro años, demostramos que el modelo propuesto logra una mayor precisión de predicción que otros métodos (por ejemplo, KNN, teoría de ondas de choque y RNA). Este trabajo supone la introducción de las SNN en el ámbito de la predicción de accidentes de tráfico y también una descripción completa del post-impacto en toda la vida del accidente.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Evaluación del rendimiento de los servicios de carretera basada en la percepción humana de las vibraciones durante la conducción de vehículos
Artículo:
Influencia del pago por móvil en el tiempo de servicio de embarque en autobús
Video:
Logística y cadena de suministros
Artículo:
Exploración de los factores asociados a la gravedad de las lesiones de los ciclistas en los accidentes entre vehículos y bicicletas eléctricas a partir de un modelo logit de parámetros aleatorios
Artículo:
Modelización de la decisión de fusión durante el periodo de ejecución basada en Random Forest
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Libro:
Ergonomía en los sistemas de trabajo
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Los web services como herramienta generadora de valor en las organizaciones