La pandemia de COVID-19 ha tenido un impacto significativo en la vida pública y la salud en todo el mundo, poniendo en riesgo los sistemas sanitarios mundiales. El primer paso para detener este brote es detectar la infección en sus primeras etapas, lo que aliviará el riesgo, controlará la propagación del brote y restaurará la plena funcionalidad de los sistemas sanitarios del mundo. En la actualidad, la PCR es la herramienta de diagnóstico más frecuente para el COVID-19. Sin embargo, las radiografías de tórax pueden desempeñar un papel esencial en la detección de esta enfermedad, al igual que lo hacen con éxito para muchas otras neumonías víricas. Lamentablemente, existen características comunes entre COVID-19 y otras neumonías víricas, por lo que la diferenciación manual entre ellas parece ser un problema crítico y necesita la ayuda de la inteligencia artificial. Esta investigación emplea técnicas de aprendizaje profundo y de transferencia para desarrollar modelos precisos, generales y robustos para la detección de COVID-19. Los modelos desarrollados utilizan redes neuronales convolucionales o modelos de aprendizaje de transferencia o los hibridan con potentes técnicas de aprendizaje automático para explotar todo su potencial. Para la experimentación, aplicamos los modelos propuestos a dos conjuntos de datos: la base de datos de radiografías COVID-19 de Kaggle y un conjunto de datos locales del Hospital Asir, Abha, Arabia Saudí. Los modelos propuestos obtuvieron resultados prometedores en la detección de los casos de COVID-19 y en la discriminación de los casos normales y de otras neumonías víricas con una precisión excelente. Los modelos híbridos extrajeron características de la capa plana o de la primera capa oculta de la red neuronal y luego introdujeron estas características en un algoritmo de clasificación. Este enfoque mejoró los resultados hasta alcanzar una precisión total en la clasificación binaria de COVID-19 y un 97,8 en la clasificación multiclase.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículos:
Mejora de la discriminación neutrón-gamma con el detector de centelleo orgánico de estilbeno mediante métodos ciegos de matriz no negativa y factorización tensorial
Artículos:
Propiedades del nanopéptido Surfactin C-15 y su efecto citotóxico en la línea celular del cáncer de cérvix humano (HeLa)
Artículos:
Una arquitectura para la detección móvil de la contaminación con alta resolución espacial
Artículos:
El plomo como factor de riesgo cardiovascular ambiental
Artículos:
Perfiles del cinoma
Tesis y Trabajos de grado:
Sistema de costos por órdenes de producción para determinar la rentabilidad de la empresa de lácteos “San Agustín” Cía. Ltda., ubicada en la parroquia de Pintag, provincia de Pichincha
Showroom:
Bombas centrífugas
Norma:
Bombas centrífugas
Artículos:
Comportamiento del aguacate Hass liofilizado durante la operación de rehidratación