Los modelos de programación estocástica son problemas de optimización a gran escala que se usan para facilitar la toma de decisiones bajo incertidumbre. Los algoritmos de optimización para tales problemas necesitan evaluar los costos futuros esperados de decisiones presentes, a menudo referidos como la función con recurso (recourse function).
En la práctica, este cálculo es computacionalmente complejo, ya que requiere la evaluación de una integral multidimensional cuyo integrando es un problema de optimización. A su vez, la función con recurso debe estimarse empleando técnicas tales árboles de escenario o métodos de Monte Carlo, los cuales exigen numerosas evaluaciones funcionales para producir resultados exactos para problemas a gran escala con periodos múltiples. En este documento se introduce un marco de muestreo de importancia para programación estocástica que puede producir estimados exactos de la función con recurso utilizando un número pequeño de muestras.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Evaluación del torneado tangencial de titanio con chorro de agua abrasivo (AWJ)
Video:
Una introducción amable y gentil a la simulación cadena de Markov Monte Carlo: segunda parte
Video:
Matriz de covarianza simple
Informe, reporte:
Estudio de métodos 2
Artículo:
Modelo matemático para la optimización de una cadena de suministro global con consideraciones de cupos de compra y periodos de pago
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Análisis socioeconómico de la problemática de los desechos plásticos en el mar
Artículo:
Los web services como herramienta generadora de valor en las organizaciones