Se propone una nueva ecuación para la predicción de la resistencia a la deformación del acero en condiciones industriales de laminación en caliente. Esta nueva expresión puede utilizarse para una descripción más precisa del comportamiento de deformación del material en condiciones de servicio utilizando datos de experimentos de plastómetro de laboratorio.
INTRODUCCIÓN
Se utilizan una variedad de experimentos de laboratorio con plastómetros para investigar la deformación plástica de los materiales. De los que probablemente sean los más poderosos y prometedores, pero al mismo tiempo relativamente simples, para investigar el acero y predecir su comportamiento en condiciones de servicio de laminación en caliente, son el ensayo de plastómetro de torsión [1-5] y el ensayo de plastómetro de compresión, utilizando cualquiera de compresión ordinaria [6-8] o métodos de relajación del estrés [9-11].
Hay varias modificaciones de los métodos mencionados anteriormente realizados de acuerdo con los diferentes programas de tiempo y temperatura: isotérmico o anisotérmico; deformación continua (un paso) o diferentes secuencias de deformación repetida. El objetivo final de todas estas pruebas debe ser predecir la resistencia a la deformación de los aceros en condiciones industriales reales. Entre las variables que influyen en la deformación en caliente (deformación, tasa de deformación, temperatura y tamaño de grano de "entrada"), debido a las restricciones de construcción de los plastómetros, la tasa de deformación en las pruebas de laboratorio es muy a menudo uno o más órdenes de magnitud inferior a las tasas típicas en la industria. laminadores Así, aunque se puede obtener una descripción adecuada de la cinética del proceso de endurecimiento/ablandamiento en condiciones de laboratorio, los valores de tensión previstos y los del material procesado en un tren de laminación industrial suelen ser diferentes. También es probable que la cinética de recuperación/recristalización en deformación repetida con velocidades de deformación de servicio sea diferente en comparación con la misma cinética de proceso durante los experimentos de laboratorio debido a la diferente energía almacenada de deformación plástica como la secuencia de la diferencia mencionada en las velocidades de deformación.
El valor de la tensión a la misma deformación y temperatura es mayor a velocidades de deformación más altas. Esto se debe a que la cantidad de restauración causada por la recuperación dinámica disminuye a medida que aumenta la velocidad de deformación. A tasas de deformación más bajas, el nivel de restauración es más alto que el resultado de un tiempo de deformación más largo [12].
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Modelo de predicción de los parámetros de corte para el torneado de acero de alta resistencia de grado H: Estudio comparativo del modelo de regresión frente a ANFIS
Artículo:
Análisis del coeficiente de fricción para un acero base 5 % Cr, aplicando cargas variables de 196 N, 294 N y 392 N, y velocidades de 0,18 m/seg, 0,36 m/seg y 0,54 m/seg
Artículo:
Efecto de la muesca en el factor de concentración de la velocidad de deformación de la barra de acero inoxidable 304
Artículo:
Efecto del recocido en las propiedades mecánicas de las chapas de acero para automoción
Artículo:
Respuesta sísmica y evaluación de tirantes autocentrados de amortiguación por fricción SDOF sometidos a varios movimientos de tierra por sismo
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Análisis socioeconómico de la problemática de los desechos plásticos en el mar
Artículo:
Los web services como herramienta generadora de valor en las organizaciones