La rápida aparición del nuevo SARS-CoV-2 supone un reto y ha atraído la atención mundial. La inteligencia artificial (IA) puede utilizarse para combatir esta pandemia y controlar la propagación del virus. En particular, las técnicas de series temporales basadas en el aprendizaje profundo se utilizan para predecir los casos de COVID-19 en todo el mundo para las dependencias a corto y medio plazo utilizando el aprendizaje adaptativo. Este estudio tenía como objetivo predecir los casos diarios de COVID-19 e investigar los factores críticos que aumentan la tasa de transmisión de este brote examinando diferentes factores influyentes. Además, el estudio analizó la eficacia de las medidas de prevención del COVID-19. Se utilizaron una red neuronal profunda totalmente conectada, una memoria a corto plazo (LSTM) y un modelo transformador como modelos de IA para la predicción de nuevos casos de COVID-19. Inicialmente, se realizó el preprocesamiento de datos y la extracción de características utilizando conjuntos de datos COVID-19 de Arabia Saudí. Se calcularon las métricas de rendimiento de todos los modelos y los resultados se sometieron a un análisis comparativo para detectar el modelo más fiable. Además, se realizó un análisis de hipótesis estadística y un análisis de correlación en los conjuntos de datos COVID-19 incluyendo características como la movilidad diaria, el total de casos, las personas totalmente vacunadas por cada cien, los ingresos hospitalarios semanales por cada millón, los pacientes de la unidad de cuidados intensivos y las nuevas muertes por cada millón. Los resultados muestran que el algoritmo LSTM tuvo la mayor precisión de todos los algoritmos y un error inferior al 2%. Los resultados de este estudio contribuyen a nuestra comprensión de la contención del COVID-19. Este estudio también aporta ideas para la prevención de futuros brotes.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Un rendimiento técnico, económico y ambiental de un sistema de energía híbrida (fotovoltaica-eólica) conectado a la red en Argelia.
Artículo:
Síntesis controlada por tamaño de nanopartículas de CoFe2O4: posible agente de contraste para resonancia magnética e investigación de sus propiedades magnéticas en función del tamaño
Artículo:
Problema del vendedor ambulante de recogida y entrega simultáneas considerando las taquillas exprés utilizando la red de planificación de rutas de atención
Artículo:
Preparación, caracterización y estudio comparativo del rendimiento fotovoltaico de dos tipos diferentes de fotoelectrodos de nanocompuestos de grafeno y TiO2
Artículo:
Sobre los Coeficientes de Conexión de los Polinomios de Chebyshev-Boubaker
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Análisis socioeconómico de la problemática de los desechos plásticos en el mar
Artículo:
Los web services como herramienta generadora de valor en las organizaciones