Cuando un sistema multiagente presenta fallas, es necesario detectar y clasificar dichas fallas a tiempo, para lo cual este estudio propone una técnica de predicción y clasificación de fallas basada en datos. El modelo predictivo basado en redes neuronales es entrenado a partir de historial de datos del sistema, para posteriormente ser implementado al sistema en tiempo real para predecir el estado y la productividad en ausencia de falla. Los algoritmos diseñados son verificados a través de un sistema gemelo de péndulo rotacional invertido y un mecanismo líder seguidor.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículos:
Necesidad de regulación y automatización de procesos en sistemas de gestión de calidad en el sector de la ingeniería mecánica
Artículos:
Propuesta de mejora del proceso de facturación en una empresa de servicios mediante la aplicación de la herramienta A3
Videos:
Webinar Introduccion a Zigbee
Artículos:
Tamaño óptimo de plantas industriales
Artículos:
Cadena de valor de Big Data: múltiples perspectivas para el sector de la construcción
Artículos:
Comportamiento del aguacate Hass liofilizado durante la operación de rehidratación
Artículos:
Caracterización estructural de la materia orgánica de tres suelos provenientes del municipio de Aquitania-Boyacá, Colombia
Informes y Reportes:
Técnicas de recuperación de suelos contaminados
Artículos:
Una revisión de la etiopatogenia y características clínicas e histopatológicas del melanoma mucoso oral.