La predicción de eventos sísmicos es una tarea crucial para prevenir los riesgos de explosión de rocas en las minas de carbón. En la actualidad, esta tarea atrae cada vez más el entusiasmo investigador de muchos expertos en minería. Teniendo en cuenta las características temporales de los datos de monitorización, la predicción de eventos sísmicos puede resumirse como una tarea de predicción de series temporales. Este trabajo contribuye a abordar el problema de la dependencia histórica a largo plazo en la predicción de series temporales sísmicas con redes neuronales de convolución temporal profunda (CNN). Proponemos una red de convolución temporal causal dilatada (DCTCNN) y un modelo híbrido de memoria a corto plazo de CNN (CNN-LSTM) para predecir eventos sísmicos. En concreto, DCTCNN se diseña con núcleos CNN dilatados, estrategia causal y conexiones residuales; CNN-LSTM se establece de forma híbrida utilizando las ventajas de CNN y LSTM. Basándose en estos métodos, tanto DCTCNN como CNN-LSTM pueden extraer características históricas a largo plazo de los datos sísmicos monitorizados. Los modelos propuestos se prueban experimentalmente en dos conjuntos de datos sísmicos de minas de carbón reales. Además, también se comparan con un método tradicional de predicción de series temporales, dos algoritmos clásicos de aprendizaje automático y dos redes estándar de aprendizaje profundo. Los resultados muestran que DCTCNN y CNN-LSTM son superiores a los otros cinco algoritmos, y completan con éxito la tarea de predicción sísmica.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Finder-MCTS: Una asignación cognitiva de espectro basada en la prioridad de estado de viaje y simulación de escenarios en IoV
Artículo:
Un Protocolo de Autenticación de Grupo de Vehículos Ligeros Seguro y Eficiente en Redes 5G
Artículo:
Recomendación de noticias personalizadas y simulación basada en un algoritmo de filtrado colaborativo mejorado.
Artículo:
Nueva perspectiva sobre las soluciones convencionales de las ecuaciones diferenciales parciales no lineales fraccionarias en el tiempo.
Artículo:
Un novedoso sistema hipercaótico de cifrado de imágenes basado en el algoritmo de optimización por enjambre de partículas y autómatas celulares