[N+]/[N]) y altos grados de desorden.INTRODUCCIÓNEn los últimos años, se ha dedicado una atención considerable al estudio de la síntesis, las estructuras y las propiedades de los polímeros electroconductores. El considerable interés por esta clase de materiales ha dado lugar a un gran número de aplicaciones importantes, como baterías recargables, electrodos modificados, condensadores y biosensores, entre muchas otras[1,2]. Para tales aplicaciones, las películas de polímeros sintetizadas electroquímicamente sobre sustratos metálicos relativamente baratos y disponibles comercialmente han despertado un interés especial.Muchos estudios relacionados con la polimerización de polipirrol y polianilina sobre metales oxidables, como el acero al carbono[3,4], el acero inoxidable[5] y el aluminio[6-7], tenían como objetivo la protección contra la corrosión de estos sustratos. La polimerización de polímeros conductores sobre aluminio es particularmente interesante debido a su posible uso como condensadores[3,8] y baterías recargables[2, 9,10].Varios autores[6,7,10-14] han descrito el uso del aluminio como sustrato para soportar polímeros conductores como el polipirrol y la polianilina, a partir de electrolitos orgánicos o acuosos compuestos por el monómero y diferentes contraaniones. El principal problema de la electrogeneración de polipirrol sobre metales reactivos, como el aluminio, está relacionado con la interferencia del comportamiento anódico/pasivo del metal durante el proceso de polimerización en la producción de películas de polímero bien adheridas. Las películas de óxido formadas en la superficie del metal actúan como barreras para la transferencia de electrones durante la electropolimerización, lo que da lugar a la inhibición del proceso si se forma una capa pasiva o a densidades de corriente reducidas si se forma una capa porosa[15]." />
Se generaron películas de polipirrol sobre sustratos de aluminio de alta pureza bajo polarización anódica a partir de electrolitos acuosos compuestos de pirrol y dodecilbencenosulfonato sódico. Los métodos empleados para caracterizar las películas poliméricas incluyeron la microscopía electrónica de barrido, la espectroscopia de infrarrojos y de fotoelectrones con transformada de Fourier y la difracción de rayos X. Las películas de PPY/SDBS mostraron una estructura nodular. Las películas de PPY/SDBS revelaron una morfología nodular con aparición ocasional de "dendritas", alto nivel de protonación, exceso de contraaniones ([S]/[N] > [N+]/[N]) y altos grados de desorden.
INTRODUCCIÓN
En los últimos años, se ha dedicado una atención considerable al estudio de la síntesis, las estructuras y las propiedades de los polímeros electroconductores. El considerable interés por esta clase de materiales ha dado lugar a un gran número de aplicaciones importantes, como baterías recargables, electrodos modificados, condensadores y biosensores, entre muchas otras[1,2]. Para tales aplicaciones, las películas de polímeros sintetizadas electroquímicamente sobre sustratos metálicos relativamente baratos y disponibles comercialmente han despertado un interés especial.
Muchos estudios relacionados con la polimerización de polipirrol y polianilina sobre metales oxidables, como el acero al carbono[3,4], el acero inoxidable[5] y el aluminio[6-7], tenían como objetivo la protección contra la corrosión de estos sustratos. La polimerización de polímeros conductores sobre aluminio es particularmente interesante debido a su posible uso como condensadores[3,8] y baterías recargables[2, 9,10].
Varios autores[6,7,10-14] han descrito el uso del aluminio como sustrato para soportar polímeros conductores como el polipirrol y la polianilina, a partir de electrolitos orgánicos o acuosos compuestos por el monómero y diferentes contraaniones. El principal problema de la electrogeneración de polipirrol sobre metales reactivos, como el aluminio, está relacionado con la interferencia del comportamiento anódico/pasivo del metal durante el proceso de polimerización en la producción de películas de polímero bien adheridas. Las películas de óxido formadas en la superficie del metal actúan como barreras para la transferencia de electrones durante la electropolimerización, lo que da lugar a la inhibición del proceso si se forma una capa pasiva o a densidades de corriente reducidas si se forma una capa porosa[15].
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Pirólisis catalítica in situ de carbón de bajo rango para la conversión de aceites pesados en aceites ligeros
Artículo:
Algoritmo para evitar que el acero fundido se adhiera al molde en el proceso de fundición continua
Artículo:
Efecto de la degradación por inmersión en acido nítrico sobre las propiedades de un poliéster reforzado con fibras de vidrio
Artículo:
Análisis de la velocidad de enfriamiento y su efecto en la distribución del patrón y el tamaño de las partículas de diboruro de titanio formadas
Artículo:
Estudio sobre el calor de hidratación y el desarrollo de la resistencia del hormigón espumado in situ