Se presenta una metodología para el preproceso de características generadas a partir de registros electrónicos de bioseñales, particularmente se experimenta con señales de voz en la detección automática de patologías. La metodología de proceso propuesta se limita a tres fases: detección de datos atípicos, verificación de normalidad y transformación de distribuciones. La metodología conlleva al mejoramiento en la detección de las patologías de voz, además de reducir la complejidad computacional de los algoritmos de clasificación. El desempeño del clasificador indica un aumento superior a 15 puntos porcentuales en la detección de disfonías al emplear la metodología.
Introducción
Los sistemas de análisis de datos y de reconocimiento de patrones están frecuentemente afectados por los efectos que pueden acarrear mediciones erróneas o distorsión de la información medida. Sin embargo, múltiples procesos de verificación de la calidad y de la representatividad de dichas mediciones se realizan para ajustar los datos de análisis de forma objetiva. Además, seleccionar correctamente el volumen de la muestra y aplicar una apropiada metodología de registro, son factores igualmente importantes en la obtención de mediciones adecuadas. El preproceso de datos tiene como objetivo la disminución de la influencia, y en lo posible, la eliminación de los errores de medida ocasionados por fallas sistemáticas u ocasionales durante el registro de las señales. El preproceso permite ejercer control sobre la homogeneidad de las propiedades estadísticas de las diferentes características del fenómeno aleatorio (Daza-Santacoloma et al., 2007). Convencionalmente, el preproceso de los datos puede dividirse, por lo menos, en tres etapas básicas: remoción de valores atípicos, verificación de normalidad y transformación de distribuciones.
La etapa de remoción de valores atípicos es imprescindible. La consecuencia directa de la inclusión de observaciones atípicas dentro de los datos de análisis es la distorsión de las estimaciones de los valores de aleatoriedad, por ejemplo de las medias y desviaciones típicas, construyendo falsas relaciones entre los datos (Peña y Prieto, 2001). La verificación de normalidad consiste en corroborar que la función de densidad de probabilidad de las variables corresponda con una distribución normal, esto es necesario porque muchos análisis posteriores de los datos se realizan bajo este supuesto. Cuando la hipótesis de normalidad de los datos no se cumple, es preferible aplicar una transformación sobre ellos que permita que dicha hipótesis sí se verifique. Con el fin de evidenciar los beneficios del preproceso aplicado a sistemas de reconocimiento de patrones en bioseñales se presenta un ejemplo de reconocimiento automático de patologías de voz y sus mejoras al aplicar cada una de las etapas de preproceso señaladas. Se puede apreciar cómo la precisión final del sistema de reconocimiento es contundentemente mayor.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Diseño de un biorreactor a partir de un autoclave en desuso
Artículo:
Aplicación de una RCNN rápida basada en capas superiores e inferiores en el reconocimiento facial
Artículo:
Diferencias de género en individuos con alto riesgo de psicosis: una revisión exhaustiva de la literatura.
Artículo:
Evaluación antimicrobiana y toxicológica de Origanum vulgare: un estudio in vivo
Artículo:
Factores asociados con los accidentes de tráfico entre los mensajeros en motocicleta en Brasil.
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Análisis socioeconómico de la problemática de los desechos plásticos en el mar
Artículo:
Los web services como herramienta generadora de valor en las organizaciones