La distribución de función hipergeométrica invertida tipo I tiene la función de densidad de probabilidad proporcional a xv−1(1+x)−(v+γ)2F1(α,β;γ;(1+x)−1),x>0,ormalsize x^{v-1} (1 + x)^{-(v+gamma)} iny 2 ormalsize F iny 1 ormalsize (alpha, eta;gamma;(1+x)^{-1}), x>0, donde 2F1 es la función hipergeométrica de Gauss. En este artículo se deriva la función de densidad de probabilidad del producto de dos variables aleatorias independientes que se distribuyen según la función hipergeométrica inversa tipo I. También se consideran otros productos entre variables aleatorias con distribución beta tipo I, beta tipo II, beta tipo III, función hipergeométrica tipo I, función hipergeométrica inversa tipo I y Kummer–beta.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículos:
Red profunda basada en autocodificadores ELM incrementales ortogonales convexos apilados
Artículos:
Un enfoque eficiente basado en la definición de gradiente para resolver la perturbación óptima no lineal condicional
Artículos:
Digrafos difusos pitagóricos y su aplicación en centros de atención médica.
Artículos:
Análogo de Subordinación Diferencial Asociado con la Lemniscata de Bernoulli
Artículos:
Extracción de Información de Movimiento Humano de Video Digital Basada en la Ecuación de Poisson 3D
Artículos:
Comportamiento del aguacate Hass liofilizado durante la operación de rehidratación
Artículos:
Caracterización estructural de la materia orgánica de tres suelos provenientes del municipio de Aquitania-Boyacá, Colombia
Informes y Reportes:
Técnicas de recuperación de suelos contaminados
Artículos:
Una revisión de la etiopatogenia y características clínicas e histopatológicas del melanoma mucoso oral.