Sean y funciones acotadas, y sean y operadores Toeplitz en . Mostramos que si el producto es igual a cero y una de las funciones es una función radial que satisface una condición de transformada de Mellin, entonces la otra función debe ser cero.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Algunas propiedades de las funciones pseudo casi periódicas ponderadas
Artículo:
Un Nuevo Resultado de Estabilidad para el Sistema Termoelástico de Bresse de Segundo Sonido Relacionado con Términos de Forzamiento, Retraso y Pasado Historial.
Artículo:
Factores socioeconómicos de la contaminación ambiental en China: Un análisis econométrico espacial
Artículo:
Comparación de los Métodos Asintótico Homotópico Óptimo y de Descomposición Adomian para un Flujo de Película Delgada de un Fluido de Tercer Grado sobre una Banda en Movimiento
Artículo:
Ecuación de Kawahara-Burgers en una franja
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Análisis socioeconómico de la problemática de los desechos plásticos en el mar
Artículo:
Los web services como herramienta generadora de valor en las organizaciones