El reconocimiento de la malignidad del melanoma es una tarea difcil debido a la existencia de similitud intraclase, artefactos naturales o clnicos, variacin del contraste de la piel y mayor similitud visual entre la piel normal y la afectada por el melanoma. Para superar estos problemas, proponemos una solucin novedosa aprovechando la red neuronal convolucional de regin extrema para el reconocimiento de la malignidad del melanoma como maligno o benigno. En trabajos recientes sobre el reconocimiento de tumores malignos de melanoma se han empleado las tcnicas tradicionales de aprendizaje automtico basadas en diversas caractersticas elaboradas a mano o la recientemente introducida red CNN. Sin embargo, el entrenamiento eficiente de estos modelos es posible si localizan la regin afectada por el melanoma y aprenden la representacin de caractersticas de alto nivel de la lesin de melanoma para predecir la malignidad del melanoma. En este artculo, incorporamos esta observacin y proponemos una nueva red neuronal convolucional regin-extrema para el reconocimiento de la malignidad del melanoma. Nuestra red neuronal convolucional regin-extrema propuesta refina las imgenes de dermatoscopia para eliminar artefactos naturales o clnicos, localiza la regin afectada por el melanoma y define los lmites precisos alrededor de la lesin de melanoma. La lesin de melanoma definida se utiliza para generar mapas de caractersticas profundas para el aprendizaje de modelos utilizando el clasificador de mquina de aprendizaje extremo (ELM). El modelo propuesto se evala en dos conjuntos de datos de desafo (ISIC-2016 e ISIC-2017) y obtiene mejores resultados que los ganadores del desafo ISIC. Nuestra red neuronal convolucional de regin extrema reconoce la malignidad del melanoma en un 85% en ISIC-2016 y en un 93% en ISIC-2017. Nuestra red neuronal convolucional regin-extrema segmenta con precisin la lesin de melanoma con un ndice Jaccard medio de 0,93 y una puntuacin Dice de 0,94. La red neuronal convolucional regin-extrema tiene varias ventajas: elimina los artefactos clnicos y naturales de las imgenes dermatoscpicas, localiza y segmenta con precisin la lesin de melanoma y mejora el reconocimiento de la malignidad del melanoma mediante el aprendizaje de modelos feedforward. La red neuronal convolucional regin-extrema consigue una mejora significativa del rendimiento con respecto a los mtodos existentes, lo que la hace adaptable para resolver problemas complejos de anlisis de imgenes mdicas.
Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.
Artículo:
Sistema de entrenamiento de la capacidad física de los adolescentes basado en la inteligencia artificial
Artículo:
Algunos teoremas de punto fijo de aplicaciones contractivas en espacios métricos de cono sobre álgebras de Banach
Artículo:
Investigaciones de atenuación de vibraciones en una viga de cristales fonónicos distribuidos para estructuras de hormigón con caucho
Artículo:
Similarity Analysis for Effects of Variable Diffusivity and Heat Generation/Absorption on Heat and Mass Transfer for a MHD Stagnation-Point Flow of a Convective Viscoelastic Fluid over a Stretching Sheet with a Slip Velocity.
Artículo:
El radio espectral del laplaciano de una clase de grafos unicíclicos
Artículo:
Creación de empresas y estrategia : reflexiones desde el enfoque de recursos
Libro:
Ergonomía en los sistemas de trabajo
Artículo:
La gestión de las relaciones con los clientes como característica de la alta rentabilidad empresarial
Artículo:
Los web services como herramienta generadora de valor en las organizaciones