Biblioteca122.739 documentos en línea

Artículos

Dual-Path Attention Compensation U-Net for Stroke Lesion SegmentationRed-U de compensación de atención de doble vía para la segmentación de lesiones de accidentes cerebrovasculares

Resumen

Para la tarea de segmentación de las lesiones por apoplejía, el uso del modelo U-Net de atención basado en el mecanismo de auto-atención puede suprimir las regiones irrelevantes en una imagen de entrada, al tiempo que resalta las características salientes útiles para tareas específicas. Sin embargo, cuando la lesión es pequeña y el contorno de la misma es borroso, la U-Net de atención puede generar mapas de coeficientes de atención erróneos, lo que conduce a resultados de segmentación incorrectos. Para hacer frente a este problema, proponemos una red U-Net de compensación de atención de doble ruta (DPAC-UNet), que consiste en una red primaria y una red de ruta auxiliar. Ambas redes son modelos de U-Net de atención y tienen una estructura idéntica. La red de ruta primaria es la red principal que realiza la segmentación precisa de las lesiones y la salida del resultado final de la segmentación. La red de trayectoria auxiliar genera coeficientes auxiliares de compensación de la atención y los envía a la red de trayectoria primaria para compensar y corregir los posibles errores de los coeficientes de atención. Para llevar a cabo el mecanismo de compensación de DPAC-UNet, proponemos una pérdida binaria ponderada de entropía cruzada de Tversky (WBCE-Tversky) para entrenar la red de ruta primaria con el fin de lograr una segmentación precisa y proponemos otra función de pérdida compuesta denominada pérdida de tolerancia para entrenar la red de ruta auxiliar con el fin de generar mapas de coeficientes de atención de compensación auxiliar con un área de cobertura ampliada para realizar operaciones de compensación. Llevamos a cabo experimentos de segmentación utilizando el conjunto de datos de 239 resonancias magnéticas de los trazados anatómicos de las lesiones después del accidente cerebrovascular (ATLAS) para evaluar el rendimiento y la eficacia de nuestro método. Los resultados experimentales muestran que la puntuación DSC de la red DPAC-UNet propuesta es un 6% superior a la U-Net de atención de una sola vía. También es superior a los métodos de segmentación existentes en la literatura relacionada. Por lo tanto, nuestro método demuestra unas potentes capacidades en la aplicación de la segmentación de lesiones de ictus.

  • Tipo de documento:
  • Formato:pdf
  • Idioma:Inglés
  • Tamaño: Kb

Cómo citar el documento

Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.

Este contenido no est� disponible para su tipo de suscripci�n

Información del documento